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Abstract

Genome-wide association (GWA) studies offer new avenues for medical insights.
By aggregating summary association statistics across many individuals, they are
largely free of the security and logistical concerns that burden the use of individual-
level genome data, and provide a unique opportunity to uncover complex rela-
tionships between single nucleotide polymorphisms (SNPs) and phenotypic traits.
However, this practice is complicated by different sets of SNPs being included in
each study, leading to missing SNP statistics when analyzing studies in aggregate.
To address this problem, we propose stacked bidirectional LSTM autoencoders
with a custom loss function as a robust statistics imputation method. In our ex-
periment involving the imputation of missing p-values across approximately one
million SNPs and 11 traits, our method reduces the mean-squared logarithmic error
on imputed p-values by 22.5% when compared to traditional statistical imputation
techniques.

1 Introduction

A genome-wide association (GWA) study examines a set of single-nucleotide polymorphisms (SNPs)
in a collection of individuals and correlates genetic variants with a specific trait. By aggregating many
individuals’ data, GWA studies avoid the privacy concerns and logistical hindrances of releasing
individual genomes. GWA studies have produced vast databases of genetic variation featuring millions
of individuals across hundreds of traits. Once a GWA study is compiled, practitioners can sequence
a patient’s genome to identify SNPs and improve their understanding of the patient’s likelihood of
developing conditions such as Alzheimer’s or diabetes throughout their lifetime. This technique has
already been used to reduce the risk of contracting life-threatening diseases such as breast cancer by
performing preventative procedures on patients with the presence of risk-increasing SNPs. As the
cost of sequencing techniques decreases, having a source of publicly-available, relatively noise-free
GWA statistics for a comprehensive set of traits will become increasingly invaluable to medicine.

One complication of the use of GWA studies, however, is that not all studies analyze the same
set of SNPs. Since GWA studies are often incomplete, the statistics for a specific SNP may be
missing in a study. When aggregating findings from multiple GWA studies, solving this problem
requires accurately imputing unobserved statistical data using linkage disequilibrium patterns found
in more densely genotyped reference datasets. By leveraging interactions between nearby SNPs in
the genome and inter-trait associations, a method that can accurately impute missing statistics would
improve the robustness of genetics-based preventative medicine. In our work, we present several
neural network-based architectures for imputing missing GWA statistics and show that our stacked
bidirectional long short term memory (BLSTM) architecture consistently outperforms naive statistical
imputation methods.



2 Related Work

In general, our problem can be thought of as a sequence-to-sequence denoising problem: we have an
input sequence of values with some values missing and want to output a sequence with the imputed
missing values. Recent work using multi-layer LSTMs to map sequences to sequences demonstrates
their ability to better capture long-term dependencies across input data relative to traditional recurrent
neural network units [1]. Regarding the denoising aspect of our problem, [2] introduces denoising
autoencoders as a technique to codify meaningful, robust representations of inputs. Furthermore,
[3] demonstrates the efficacy of stacked denoising autoencoders in learning useful, noise resistant
representations of inputs, relative to alternative unsupervised learning models such as deep belief
networks.

Recent work in the domain of genome statistics imputation evaluates a row averaging method,
a weighted k-nearest neighbors method, and a singular-value decomposition-based method [4] as
applied to DNA microarrays. Researchers found that the k-nearest neighbors and SVD-based methods
surpassed the row-averaging method, with the former more robust and sensitive. To the best of our
knowledge, the area of GWA statistics imputation is largely unexplored.

3 Dataset and Preprocessing

From a list of publicly-available summary association statistics featured in [5], we chose 11 studies
for our work, shown in Table 1. Each study reports p-values for a specific trait for about a million
SNPs each. The 11 studies we use mention 2,866,924 unique SNPs in total. 22.1% of the p-values
for these SNPs are missing in the full data. To train our models, we need complete statistics to use
as target labels. To that end, we use the subset of SNPs that have statistics for all 11 traits. 925,285
SNPs met this criterion.

We represent each SNP as an 11-dimensional vector of p-values and order SNPs by their position
in the genome. When ordered this way, our dataset can be interpreted as a long sequence of SNP
vectors. For most architectures, modeling this sequence at once is computationally unfeasible. We
therefore split the sequence into shorter subsequences of fixed length with an overlapping stride
between consecutive subsequences. We optimize these values on a per-model basis. We ensure that
subsequences never cross chromosome boundaries and split the subsequences for each chromosome
into training, validation, and test sets. Although subsequences may overlap within a set, we ensured
that no SNPs were present in both the training and test sets.

Modeling p-values accurately becomes more important as they approach zero. P-values represent the
probability that an observation (i.e. a particular SNP-trait pairing) occurs given the null hypothesis
that they are uncorrelated. Therefore, we are not as interested in the difference between relatively
large p-values (suggesting no significant correlation) as we are in the difference between small
p-values. For example, the difference between a p-value of 0.1 and 0.0001 is much more important
to capture than the difference between a p-value of 0.8 and 0.7, at which point both values fail to
represent a strong correlation between a trait and the presence or absence of a SNP. We therefore
modulate the raw p-values in the dataset by using log p-values instead. We add 1 to the p-values
before taking the logarithm to simplify the evaluation of our loss function (see Section 4.1) and to
prevent numerical stability for p-values near zero. We also mean-normalize the inputs, which helps
with training and allows us to simulate missing statistics in the input by randomly setting p-values to
zero.

4 Methodology

We explore two main architectures in our work and compare their performance to more naive baselines.
Hyperparameters of each architecture, such as the subsequence length and the hidden layer sizes,
were optimized with respect to the validation set. Section 5 includes a discussion on the results of our
hyperparameter and architecture exploration.
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Table 1: Publicly-available GWA studies used in our work. N refers to the number of patients in each
study.

Trait N Reference URL

HbA1C 46,368 Soranzo et al. 2010
Diabetes magicinvestigators.org/downloads/

BMI 122,033 Speliotes et al. 2010
Nat Genet

broadinstitute.org/collaboration/giant/index.php/
GIANT_consortium_data_files

Coronary
artery disease 77,210 Schunkert et al. 2011

Nat Genet cardiogramplusc4d.org/

Cholesterol
levels 94,461 Teslovich et al. 2010

Nature broadinstitute.org/mpg/pubs/lipids2010/

Crohn’s
disease 20,883 Jostins et al. 2012

Nature ibdgenetics.org/downloads.html

Fasting glucose
levels 58,074 Manning et al. 2012

Nat Genet magicinvestigators.org/downloads/

Fasting insulin
levels 51,750 Manning et al. 2012

Nat Genet magicinvestigators.org/downloads/

Height 131,547 Lango Allen et al. 2010
Nature

broadinstitute.org/collaboration/giant/index.php/
GIANT_consortium_data_files

Insulin sensitivity
index 16,753 Walford GA et al. 2016

Diabetes magicinvestigators.org/downloads/

Triglyceride
levels 94,461 Teslovich et al. 2010

Nature broadinstitute.org/mpg/pubs/lipids2010/

Ulcerative colitis 27,432 Jostins et al. 2012
Nature ibdgenetics.org/downloads.html

4.1 Objective

The framework for our problem is summarized in Figure 1. We corrupt the input SNP vectors by
randomly setting some statistics to zero. Our models then attempt to impute the missing values.
We evaluate all our models using the mean squared logarithmic error (MSLE) between the original,
non-corrupted values and the imputed values. Given a vector of true statistics s and a reconstructed
vector s∗, the MSLE is defined as:

MSLE(s, s∗) =
1

|M(s)|
∑

i∈M(s)

(log(si + 1)− log(s∗i + 1))2

where M(s) denotes the set of indices of s where statistics were censored in the input to the model.
When our dataset’s p-values are preprocessed by taking their logarithm, the MSLE reduces to the
mean-squared error (MSE). Computing the loss exclusively on the imputed values is equivalent to
the loss function of the “emphasized denoising autoencoder" in [3] with α = 1 and β = 0. Unlike
in traditional denoising autoencoders, we do not care about the ability of our model to reconstruct
values that are already present in the input: if the p-values are present in the input, there is no need to
impute them.

In our neural network architectures, we directly optimize our objective by using the MSLE on the
imputed values as the loss function. We use Adam [6] to perform gradient descent with per-parameter
adaptive learning rates, using the default values of α = 0.001, β1 = 0.9, and β2 = 0.999. We train
our models on an NVIDIA Tesla K80 GPU and use the largest batch size for each architecture that
can fit in memory. All our models were implemented using Keras [7] and TensorFlow [8].

4.2 Baseline Models

4.2.1 Statistical baselines

To contextualize our results, we use several statistical methods to impute missing statistics. The
simplest is a per-trait “global” average. In this method, we compute an average across all available
p-values for each trait and then impute all missing values using these averages. We also use more
sophisticated statistical methods to impute missing p-values. These include matrix completion by
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Figure 1: Imputation framework for all our models. The loss is computed only with respect to the
corrupted inputs.

iterative soft thresholding of SVD decompositions [10], multiple imputation by chained equations
[11], and matrix completion by iterative low-rank SVD decomposition [4]. We also attempted to
use k-nearest neighbor imputation, but finding the Euclidean distance for every SNP pair was not
computationally feasible. The issue with all of the methods we have mentioned so far is that they
do not take the relative ordering of the SNP vectors into account. Rather, they assume they are
independent samples drawn from the same distribution. However, the values of nearby SNPs in the
genome for the same trait are likely to contain information that is useful in imputing the missing
values.

To remedy this issue, we also use a “local" average variant to impute p-values. This method imputes
each missing p-value by searching its left and right SNP vector neighbors for the nearest available
p-value in each direction in the genome, and then uses the average of the two as the imputed value. In
our experiments, all sophisticated statistical methods we tried performed worse than our local average
variant, so we restrict our results to only the global and local averages.

4.2.2 SNP-wise denoising autoencoder baseline

This baseline attempts to reconstruct censored individual SNP vectors one 11-dimensional vector at a
time using a fully-connected network with a single hidden layer, in the style of denoising autoencoders
[2]. The idea of this architecture is to exploit inter-trait dependencies to impute missing statistics. For
example, if a SNP is correlated with low insulin levels, it may also be correlated with high levels of
glucose, so if either p-value is missing, the model might be able to impute it relatively accurately. In
this neural network architecture, as well as in the following two architectures, we choose the ReLU
activation function for all layers except the output layer, where we use a linear activation.

4.3 Improved Architectures

4.3.1 Architecture 1: Subsequence denoising autoencoder

This baseline attempts to impute summary statistics using a network similar to the one in Section 4.2.2,
except that it takes in flattened sequences of adjacent SNP vectors and tries to reconstruct the censored
values for the entire sequence. By treating the data as a sequence, the intuition is that the network
may learn how to impute a summary statistic from the statistics of neighboring SNPs in the genome.
Unlike all previous models, this architecture should be able to exploit inter-SNP dependencies for
neighboring SNPs as well as inter-trait dependencies.

4.4 Architecture 2: Stacked bidirectional LSTM

A large drawback to the fully-connected sequence architecture is that long-distance interactions cannot
be easily exploited. As the sequence length of the inputs is increased, the number of parameters in
the architecture grows exponentially. To remedy this, we choose to treat our task as a sequence-to-
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Figure 2: Structure of our stacked bidirectional LSTM architecture with two bidirectional layers.
Illustration from [9].

sequence problem and turn our attention to recurrent architectures, where the input sequences can be
of arbitrary length.

For our task, we consider stacked bidirectional LSTMs. In many domains, LSTMs have been more
successful modeling sequences than plain recurrent neural networks. Using two LSTM units at
each layer (one for each direction) allows the architecture to consider summary statistics from both
directions in the genome. Additionally, stacking layers of bidirectional units enables our model to
learn more complex patterns in the input. This architecture is summarized in Figure 2. We include a
fully-connected layer with a linear activation just before the output to reduce the hidden dimensions
to the correct size and to further enhance the expressiveness of our model.

Unlike sequence-to-sequence models that encode sequential inputs into a fixed-length representation
before decoding that representation into a new sequence (as in translation models), this model outputs
a vector for every position in the input sequence. This is preferred in our case because the input and
target sequences are synchronized and equal in length, and we are not attempting to find a fixed-length
encoding of the input sequence.

5 Results

5.1 Architecture exploration

Table 2 shows a subset of the results of our hyperparameter optimizations for each architecture. In
all models with a sequence length greater than 1, we used a stride length of half of the sequence
length. Overall, the stacked LSTM architecture with two bidirectional layers and a 100-dimensional
hidden unit per LSTM outperformed all other models. In general, increasing the size of the hidden
dimension improved the performance of the neural network-based models when holding sequence
length constant, but we tended to experience diminishing returns.

Preprocessing the input by taking the logarithm of the raw p-values and mean-normalizing the result
significantly improved the performance of all our models. As an example, the loss on the final
BLSTM architecture with and without preprocessing the input is shown in Figure 3. When the input
is preprocessed, the loss decays much faster from the very beginning. Without preprocessing, the
models never perform quite as well even after many epochs of training.

We show the effect of increasing the length of the subsequences for the subsequence autoencoder and
the BLSTM models in Figure 4. While longer sequence lengths improved the performance of the
BLSTM without having to modify the architecture, the subsequence autoencoder model was much
harder to train on longer sequences. This was despite our efforts to improve the expressiveness of
the autoencoder by scaling up the size of the hidden dimension as the length of the input sequence
was increased. Unlike the subsequence autoencoder, the stacked BLSTM was able to capture long-
distance relationships in the input to provide more accurate imputations. Furthermore, the number
of parameters in the subsequence autoencoder grows exponentially with the length of the input
sequence, whereas in the BLSTM model, the number of parameters stays fixed. Even if we were able
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Table 2: Architecture exploration results on validation set using 0.2 as the corruption probability.
Models marked with ∗ are the best-performing variants of each architecture, which we include in the
rest of our results.

Model Seq length Hidden dimension(s) Trained parameters LMSE

Global average∗ - - 11 0.0395
Local average∗ - - - 0.0388
SNP-wise Autoencoder 1 20 264 0.0402
SNP-wise Autoencoder∗ 1 500 2311 0.0401
Subsequence Autoencoder∗ 20 220 606,100 0.0309
Subsequence Autoencoder 500 5500 60,511,000 0.0395
Subsequence Autoencoder 500 5500, 5500 90,766,500 0.0397
BLSTM 500 50× 2 25,911 0.0306
BLSTM 500 100× 2 91,811 0.0301
BLSTM 500 50× 2, 50× 2 86,311 0.0301
BLSTM∗ 500 100× 2, 100× 2 332,611 0.0300

5 10 15 20

Epoch
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0.035

0.040

0.045
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0.055

0.060

LM
SE

Raw input (train)
Raw input (val)
Preprocessed input (train)
Preprocessed input (val)

Figure 3: Loss on the final BLSTM architecture at the end of each epoch, illustrating the effects of
preprocessing the input. The corruption ratio used was 0.2.
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Figure 4: Loss of the BLSTM and subsequence autoencoder on the validation set after 20 epochs
of training for different input sequence lengths. The corruption ratio used was 0.2. The hidden
dimension of the subsequence autoencoder was set to be equal to the number values in the input (i.e.
11 times the number of SNP vectors in each input sequence).
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Figure 5: Loss per trait of each of our models on the test set for a 0.2 corruption ratio.
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Figure 6: Loss of various architectures on the test set for different corruption percentages in the input.

to successfully train the subsequence autoencoder on longer sequences, it would only be able to use
information from the nearest 1̃,000 SNPs to impute missing statistics before it would be impossible
to train on a modern GPU.

In the next section, we restrict our discussion to the best-performing models for each architecture.
Although the BLSTM model with 1,000 SNPs per sequence performed better, we use the model with
500 SNPs per sequence because it is slightly faster to train and performs comparably well. We train
the stacked BLSTM model for 60 epochs, and all other trainable models for 100 epochs.

5.2 Test set evaluation

The final performance of our architectures on the test set is summarized in Figure 5. Both of our
architectures beat the baseline models on every trait, and the BLSTM consistently outperforms the
subsequence autoencoder model, although not by a large margin. The best results for both of our
architectures are obtained on the BMI GWA study. The coronary artery disease GWA study is the
hardest study for our architectures to model. We suspect this study is particularly noisy, since the
local average baseline uncharacteristically performs much worse than the global average baseline.
The SNP-wise autoencoder does not perform well overall, likely because inter-trait dependencies in
the data are not enough to compute accurate statistical estimates. It may perform better when there is
a greater number of GWA studies in the dataset and when the traits they explore are phenotypically
related. On average, the BLSTM model reduces the MSLE by 22.5% compared to the best statistical
model we found (the local average baseline) and by 25% compared to the global average baseline.

We illustrate the performance of our architectures on the test set for different corruption percentages
in the input in Figure 6. As a reminder, the corruption ratio on the original dataset we collected
(before restricting it to the subset of SNPs with full statistics) was 0.22. The mean-based baselines do
not perform much worse as the percentage of withheld statistics increases. This is expected because
the input values were corrupted uniformly at random, so the statistical properties of the data do not
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change much. All neural network-based models, however, experience a greater loss as the corruption
percentage is increased because there are fewer p-values in the input from which to draw information.

6 Conclusion and Future Work

We present two novel architectures for GWAS statistics imputation that consider interactions between
neighboring SNPs in the genome. They provide better performance than both off-the-shelf matrix-
naive algorithms, as well as global-averaging, local-averaging, and basic autoencoder baselines,
achieving a 22.5% decrease in the mean-squared logarithmic error.

Moreover, one of these models, the stacked BLSTM, is computationally feasible to train as the
size of the input grows, while the simpler subsequence autoencoder uses an exponential number of
parameters under these conditions, takes longer to train, and often fails to converge to a better-than-
baseline solution. The stacked BLSTM consistently outperforms subsequence autoencoders for every
trait in our dataset, and has a fixed number of parameters that does not grow as the length of the input
sequence is increased. Overall, our experiments show that treating GWA statistics imputation as a
sequence-to-sequence problem is a powerful approach to exploit inter-SNP dependencies.

These findings provide several promising avenues for future work. For instance, there is a limit to the
amount of information a model can glean from only summary statistics. To improve accuracy, future
models could incorporate information about the nucleotides surrounding a given SNP, in addition to
the distance between consecutive SNPs. Furthermore, exploring convolutional architectures, which
may better model the effects of neighboring SNPs, could ultimately improve our model’s accuracy
and decrease the required training time through the use of shared filters.

In addition, our experiments only explore the case of imputing summary statistics deleted uniformly
at random from our dataset. In practice, long consecutive sequences of summary statistics are missing
for a specific trait. Future work should assess the accuracy of imputation models against these more
common configurations of missing data and develop new architectures to impute them effectively.
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