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Abstract—Interactive POMDPs (I-POMDPs) are a useful
framework for describing POMDPs that interact with other
POMDPs. I-POMDPs are solved recursively in levels: a level-
1 I-POMDP assumes the opponent acts randomly, and a level-
k I-POMDP assumes the opponent is a level-(k-1) I-POMDP.
In this paper, we introduce fully-nested I-POMDPs, which are
uncertain about the physical state of the game, the level of their
opponent, and the opponent’s belief about both. This paper has
three main contributions: it (1) introduces the framework for
turn-based fully-nested I-POMDPs and shows how to reduce
them to POMDPs; (2) motivates fully-nested I-POMDPs by
introducing the game of partially-observable nim and solving it
using SARSOP; and (3) shows empirically that increasing the
level of a fully-nested I-POMDP does not become intractable for
this game.

I. INTRODUCTION

Nim is a mathematical game in which two players take
alternate turns removing objects from distinct heaps. In one
version of nim, there are two heaps on the board, each starting
with the same number of objects. Each turn, a player selects
one of the two heaps and removes as many objects from that
heap as they wish, provided they remove at least one object.
The goal of the game is to end one’s turn leaving exactly one
object on the board. Nim is a solved game: given any board
state, there is a deterministic policy for one of the players
which will guarantee that they win the game in the end [1].

In our work, we consider an alternative version of the game
we call partially-observable nim (PO-Nim). In PO-Nim, the
objective is the same as regular nim, but each heap is only
visible to one of the two players. The challenge is to win the
game by inferring how many objects are left in the opponent’s
heap. If a player attempts to remove more objects from the
hidden heap than there exist, they lose their turn and incur a
penalty. We formalize PO-Nim below:
• The physical state of the game at any point in time can be

represented as (nown, nopp): the number of objects nown
left in the visible heap, and the number of objects nopp left
in the hidden heap. Players may be uncertain about the
state of the game because they cannot directly observe the
opponent’s heap. The game ends when the state reaches
(1, 0) or (0, 1). The initial physical state of the game is
(N,N) for some N .

• Each round, the player takes an action (h, i) consisting
of the heap h they want to move on (their visible heap

or their hidden heap) and the number of objects i they
wish to remove from that heap (i ≥ 1). An action that
removes i objects from the visible heap is invalid if i >
nown. Valid actions can be successful or unsuccessful: if
players select the hidden heap and i > nopp, the action is
unsuccessful. If an action would result in state (0, 0), the
action is also unsuccessful. An unsuccessful action does
not change the state of the board. If the action does not
result in a winning or losing board, the opponent moves
on the resulting board immediately afterwards according
to their policy. If the opponent’s move does not result in
a winning or losing board either, the game continues with
a new round of actions.

• Players receive a reward of ru if their action is unsuc-
cessful. Additionally, they receive a reward of rw if their
action yields a winning board, a reward of −rw if their
opponent’s action yields a winning board, and a reward
of zero otherwise.

• Players receive an observation (nown, succown, succopp)
from each round – namely, the number of objects left in
their visible heap, whether their own action succeeded,
and whether their opponent’s action succeeded. Players
cannot observe their opponent’s action itself.

PO-Nim is interesting for several reasons:

1) A player’s strategy should depend on the strategy of the
opponent: a good strategy must reason about the possible
states of the game, but also about what the opponent
believes the state of the game to be.

2) Removing objects from the hidden heap is useful to
gather information about the state of the board, but it
is also risky: we risk losing our turn if the action is
unsuccessful, or giving away the number of objects left
in our pile. A good strategy must trade off maximizing
information gathering for one’s own benefit and minimiz-
ing information gathering for the opponent.

3) If both policies are deterministic, the state transitions of
the game and the observations of the game are deter-
ministic. As a corollary of this fact, if the policy of the
opponent is deterministic and known, we can infer the
number of objects on the hidden heap and win the game.

In our work, we motivate and describe fully-nested in-
teractive POMDPs and show how they can model PO-Nim



as a POMDP with an augmented state-space. Fully-nested
I-POMDPs attempt to infer what policy their opponent is
using to increase their chances of winning. We solve PO-
Nim as a fully-nested I-POMDP by reducing the problem
to a POMDP and solving the POMDP using SARSOP [4].
We show empirically that increasing the number of possible
opposing policies does not render solving PO-Nim intractable.

II. PREVIOUS WORK

Variants of nim have existed since ancient times. The first
formal proof of a solution to nim for an arbitrary number of
heaps and objects was published in 1901 by C. L. Bouton
[1]. The optimal solution for a fully-observable game of nim
involves making the move which results in a “nim-sum” of
the board that is equal to zero. The nim-sum of the board is
defined as the exclusive-or of the number of objects in each
heap represented in binary. Because nim has been solved, we
turn our attention to partially-observable nim, for which there
is no clear strategy.

The concept of POMDPs that interact with other POMDPs
has been the subject of active research in recent years.
Problems in which a group of agents interact together in
the face of uncertainty are common in fields like economics,
robotics, or business. One popular framework for modelling
these dynamics is the decentralized POMDP (Dec-POMDP).
In Dec-POMDPs, agents seek to optimize a shared objective
function with only a partial view of the environment [3].
Although very much related to our work, the context of Dec-
POMDPs is strictly cooperative, and in PO-Nim, this is not
the case.

Our approach builds on interactive POMDPs (I-POMDPs),
which assume that the player is interacting with other I-
POMDPs that may be seeking to optimize conflicting objec-
tives [6]. I-POMDPs are solved recursively in levels, similarly
to the logit level-k model in behavioral game theory. A level-0
(or “subintentional”) agent is assumed to select actions without
consideration for the opponent’s belief or strategy. Commonly,
the subintentional agent is assumed to select actions randomly.
A level-1 I-POMDP is solved assuming the opponent is a
subintentional agent. In finitely-nested I-POMDPs, a level-k
I-POMDP is solved assuming the opponent is a level-(k-1)
agent.

Finitely-nested I-POMDPs are not a good framework for
PO-Nim due to the deterministic transition dynamics of the
game. If the policy of the opponent is deterministic and known
to be of level k − 1, the opponent’s moves on the hidden
heap will be known and the hidden state of the board can be
directly inferred, so the game can be solved trivially. It is also
clear that the optimal strategy against a level-(k-1) opponent
is not necessarily optimal for a level-(k-2) opponent (or any
other lower-level opponent). Furthermore, it is not a good
assumption that the level of the opponent will be known. A
good model for solving PO-Nim should therefore incorporate
some uncertainty over the level of the opponent, and have
a mechanism for updating that belief based on observations
about how they are playing.

III. METHODS AND MODEL

In this section, we introduce turn-based fully-nested I-
POMDPs, explain how to reduce them to POMDPs, and show
how to apply them to model PO-Nim. Just as in POMDPs, in
fully-nested I-POMDPs, agents are uncertain about the current
physical state of the environment. In the case of PO-Nim,
agents are uncertain about how many objects remain in the
hidden heap. In addition, in fully-nested I-POMDPs agents
are uncertain about the level of their opponent. This is in
contrast to traditional I-POMDPs, where agents assume the
opponent plays at some fixed level. In fully-nested I-POMDPs,
a level-k agent assumes that the opponent’s level is one of 1
through k − 1 but is uncertain about which. The agent will
try to infer the level of the opponent based on some prior
distribution over the possible levels of the opponent and their
observations during the course of the game. Finally, agents
are also uncertain about the belief of their opponent. Since
the opponent is also assumed to be an I-POMDP, the belief
of the opponent will be a belief over the current state of the
game and the level and belief of their opponent.

A. Fully-nested I-POMDPs as POMDPs

The overall strategy we use for solving the fully-nested I-
POMDP at a specific level is to first reduce the problem to a
POMDP with an augmented state-space, and then apply one of
several available offline POMDP solution algorithms to obtain
a policy. The state s of the augmented POMDP for level k can
be represented as (sp, l, b), where sp is the current physical
state of the game, l is the level of the opponent (l < k) with
associated policy πl, and b is the opponent’s current belief.
The transition dynamics of the augmented POMDP are defined
such that l does not change throughout the course of a game.
The next augmented state depends on the current augmented
state and the action a taken by the agent. Specifically, the
next state will be a function of sp, a, and πl(b), the action
taken by the opponent. The new augmented state should
update sp but also b, which must be changed to reflect the
opponent’s updated belief after their observation. The reward
and observation dynamics also depend on the joint action taken
by both agents at a given augmented state.

In general, b is continuous. Since the state of the POMDP
is augmented with b, it will also be continuous. Although
POMDPs with continuous state-spaces are not intractable, they
are generally harder to solve than their discrete counterparts.
To get around this problem, we can describe the opponent’s
policy as a finite-state controller. A finite-state controller is an
encoding of a policy as a finite-state machine where nodes are
labeled with an action and edges are labeled with observations.
An agent behaving according to finite-state controller executes
the action at the current node and then transitions to a new
node based on the observation they receive. This is similar
to a tree representation of a conditional plan but it allows
cycles, possibly avoiding an infinite number of nodes for
an infinite-horizon plan. In a finite-state controller, nodes
represent the possible beliefs that the agent will have about the
state. The finite-state controller for PO-Nim against a random



S (2,2,true,true) 1
A (true,1)

S (1,2,true,false) 1
A (false,2)

o (1,true,false) 0.25

S (0,2,true,true) 1
A (false,1)

o (0,true,true) 0.25

S (1,0,true,true) 0.5
A (false,1)

o (1,true,true) 0.5

S (won) 1
A (false,1)

o (0,true,false) 1 o (0,true,false) 1 o (0,true,false) 0.5

S (lost) 1
A (false,1)

o (0,false,true) 0.5

o (0,true,false) 1 o (0,false,true) 1

Fig. 1. Level-1 FSC for initial board (2, 2) assuming the player goes first.
Note that we do not need state augmentation to solve a level-1 I-POMDP
since the opponent is known. Each node is labeled with the belief and the
action that should be taken for that belief. Actions are labeled (h, i), where
h = true indicates taking i objects from the visible pile and h = false
from the opponent’s pile. The belief is represented by the state of the
board and the probability that the board is at that state. States are labeled
(nown, nopp, succown, succopp) where succown indicates whether the player’s
last move succeeded and succopp whether the opponent’s last move succeeded.
Edges are labeled with the possible observations and their probabilities.
Observations are represented as (nown, succown, succopp). This policy has an
expected reward of 0.5 against the level-0 subintentional opponent.

subintentional agent on a simple board with two objects in
each heap is shown in Figure 1. Several POMDP solvers
such as SARSOP can represent solutions to a POMDP as a
finite-state controller. Since the opponent is itself a solution
to a POMDP, its policy can be represented as a finite-state
controller, and its current belief as one of a finite number
of nodes in the controller. This allows us to solve the I-
POMDP as a POMDP with a discrete state-space rather than
a continuous one.

The size of the augmented state-space S of the POMDP
grows as the sum of the number of nodes in each lower
level’s finite-state controller. Specificially, if Sp is the physical
state space, then the size of the augmented state-space in the
POMDP for a level-k fully-nested I-POMDP is

|S| = |Sp|
k−1∑
l=1

|πl| (1)

where |πl| is the number of nodes in the finite-state controller
of a level-l solution. If the number of nodes in the controller
is upper bounded by a constant, then the state space will
only increase linearly with the level of the fully-nested I-
POMDP. Frequently, however, the number of nodes in the
controller will grow very quickly as the level of an I-POMDP
is increased, even when there is no uncertainty over the level
of the opponent. This has led to work on keeping the size of
the controller bounded, such as bounded-policy iteration [6].

Incremental policy iteration can also help bound the size of a
POMDP controller [2]. In the case of PO-Nim, we find that
this is not necessary (see Section IV).

B. Turn-based I-POMDPs

In PO-Nim, the turn-based nature of the game necessitates
an extension of our model. The transition dynamics of the
game are dependent on the action of the agent but also on
the action of the opposing agent on the resulting board. In
other words, the transition between two augmented states
includes an intermediate physical state which is the result of
the first player’s action and which the second player acts upon.
Note that the optimal policy for the starting player may not
be the same as the optimal policy for the player that goes
second. For this reason, we solve policies at each level twice:
once assuming the agent goes first, and again assuming the
agent goes second. When the agent goes second, the transition
dynamics of the game are modified such that the first “action”
that the agent takes has no effect. This change means that the
player that goes second will first observe the visible result of
the opponent’s first action before solving the rest of the game
as if they go first. We summarize the turn-based transition
dynamics for PO-Nim in Algorithm 1. The RESULT function
represents the resulting physical state after taking the given
action on the given physical state. In the case of PO-Nim,
care must be taken to ensure that the physical state of the
board is flipped for the opponent, and that the observations
they receive are in line with their corresponding visible heap.

Algorithm 1 Deterministic transition function for a turn-based
I-POMDP against an intentional opponent.

1: function TRANSITION(s, a)
2: (sp, l, b) ← s
3: if go second and sp is initial physical state then
4: s′′p ← RESULT(sp, πl(b))
5: b′ ← b
6: else
7: s′p ← RESULT(sp, a)
8: o ← OBSERVATION(s′p)
9: b′ ← UPDATEBELIEF(b, o)

10: s′′p ← RESULT(s′p, πl(b
′))

11: end if
12: s′ ← (s′′p , l, b

′)
13: return s′

14: end function

The overall procedure for solving PO-Nim as a turn-based
fully-nested I-POMDP is shown in Algorithm 2. We denote a
level-k1 agent as a level-k agent that goes first and a level-k2
opponent as a level-k agent that goes second. We first solve
level 11 against a random opponent that goes second and level
12 against a random opponent that goes first. We then solve
level k1 against a distribution over all levels l2, and level k2
against a distribution over all levels l1, where l < k. For our
purposes, we define the initial belief over the augmented states
for each level as a uniform distribution over the augmented



Algorithm 2 Solving for the level-k fully-nested, turn-based
I-POMDP

1: function SOLVE(k)
2: C1 ← {π1

0}
3: C2 ← {π2

0}
4: for l← 1 to k do
5: π1

l ← SOLVEAGAINST(C2)
6: π2

l ← SOLVEAGAINST(C1)
7: C1 ← C1 ∪ {π1

l }
8: C2 ← C2 ∪ {π2

l }
9: end for

10: end function

states with sp = (N,N) and l < k, although this can easily
be changed.

We use SARSOP to solve the POMDP at each level due
to its ability to represent policies as finite-state controllers
and good computational performance. Unlike QMDP [5],
SARSOP does not struggle with the kind of information-
gathering actions that are at the heart of a good PO-Nim
strategy. Since we are using SARSOP, we must make one final
adjustment to our model. In SARSOP, observation probabil-
ities are conditioned on the action taken at a given timestep
and the next state. However, in PO-Nim, whether or not an
action succeeds depends on the current physical state as well.
Therefore, we augment the state-space further with whether the
previous action succeeded or not, as seen in Figure 1. After
this change, the observation dynamics of the game are fully
deterministic. Except for augmented states where the opponent
is the level-0 subintentional model, the transition and reward
dynamics are deterministic as well.

IV. RESULTS

To explore the computational feasibility of fully-nested I-
POMDPs, we solve PO-Nim for various initial board configu-
rations and levels. We will focus most of our discussion on an
initial board with 3 objects in each heap (N = 3) because it
is the smallest board where a good strategy is hard to reason
about. Larger finite-state controllers for greater N are easy to
encode computationally but difficult to illustrate neatly. We
solve the I-POMDP for levels 1 through 15 as a POMDP with
an augmented state space, as described in Section III. We use
rw = 10 and ru = −1. The resulting finite-state controllers
found by our method for levels 11, 12, 21, and 22 are included
in the Appendix. A simulated game between levels 22 and
11 is shown in Figure 2. The corresponding transitions for
this particular game are indicated in Figures 6 and 9 in the
Appendix.

Figure 3 summarizes the expected reward of the fully-nested
I-POMDP at different levels assuming all opponents at a lower
level are equally likely. For low values of l, the expected
reward grows as the level is increased because the probability
of playing against the subintentional opponent is less likely;
playing against a FSC, which is easier to beat, is more likely.
For high values of l, the expected reward decreases as the

A B
Board: (3,3)
> A tries to take 1 from hidden heap
Board: (3,2)
> B observes (2,true,true)
> B tries to take 1 from hidden heap
Board: (2,2)
> A observes (2,true,true)
> A tries to take 3 from hidden heap
> Unsuccessful action!
Board: (2,2)
> B observes (2,true,false)
> B tries to take 2 from their heap
Board: (2,0)
> A observes (2,false,true)
> A tries to take 2 from their heap
> Unsuccessful action!
Board: (2,0)
> B observes (0,true,false)
> B tries to take 1 from hidden heap
Board: (1,0)
B wins! (-12.0, 10.0)

Fig. 2. Simulated game between solved finite-state controllers at levels 11
(player A) and 22 (player B). 22 wins with a reward of 10, and 12 loses with
a reward of -12.

level is increased because there is too much uncertainty about
the level of the opponent and the resulting policy is no longer
optimal for all lower-level opponents. The expected reward
going down for high values of l does not mean that the quality
of the policy necessarily decreases. Rather, it signifies that the
prior distribution over the possible levels of the opponent is
harder to beat. We also observed this trend for other values
of N . At a given level, the expected reward for the player
going first is generally lower than the expected reward for the
player going second. This is expected because the nim-sum
for two heaps and N = 3 is 0, so the first player would be at
a disadvantage in the fully-observable version of the game.

In simulations between controllers, we observe that in some
cases the solved policy incurs a penalty of ru in situations
where this is guaranteed to happen in order to obtain informa-
tion about the level of the opponent and have a chance at beat-
ing it. If we set to ru = 0, solved controllers begin the game
by removing a single object from their opponent’s heap, after
which action (false, N ) is guaranteed to be unsuccessful and
effectively becomes a “pass” action at no cost. This results in
opponents repeatedly passing back and forth until one of them
concludes (correctly or otherwise) the level of their opponent.
To win, a level k opponent passes one more time than the
number of times that the opponent at level k−1 passes. Since
opponents at lower levels cannot plan against a higher-level
opponent, they incorrectly conclude the level of the opponent
and make a move, after which the higher-level opponent can
win the game. This results in level-k models beating all lower
levels except the subintentional model deterministically. By
introducing a penalty ru < 0 for unsuccessful moves, passing
back and forth becomes suboptimal.
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Fig. 3. Expected reward of I-POMDP solution in a PO-Nim game with
N = 3, rw = 10, and ru = −1. Assumes all opponents at a lower level are
equally likely.
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Fig. 4. Time taken to obtain the finite-state controller for each level using
SARSOP given the finite-state controllers for all lower levels have already
been compute (N = 3). Includes initialization time.

We found that solving PO-Nim did not become intractable
as the level of the fully-nested I-POMDP was increased. As
shown in Figure 4, the time taken by SARSOP to increment
the level of the I-POMDP by solving an additional augmented
POMDP varies roughly linearly with the level. This is likely
due to the number of nodes in the finite-state controller of the
solution not growing very quickly as the level is increased. We
illustrate the size of the finite-state controller of the solved I-
POMDP in Figure 5. The number of nodes in the finite-state
controller sometimes decreases, keeping its size from growing
out of control. This is likely a property of the deterministic
dynamics of PO-Nim. SARSOP solved the POMDPs at each
level exactly (with policies having a utility within 10−7 of the
optimal value), also likely due to the simple nature of PO-
Nim. The final number of alpha vectors correlated with the
size of the controllers and ranged from 12 for level 21 to 61
for level 132.

V. CONCLUSION

We presented a framework for solving turn-based, partially-
observable games as fully-nested interactive POMDPs. Fully-
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Fig. 5. Number of nodes in the finite-state controller of the I-POMDP in the
solution produced by SARSOP for N = 3.

nested I-POMDPs do not require assuming that the opponent
plays at a fixed level. Instead, they allow us to solve for an
optimal policy against an arbitrary prior distribution over the
possible levels of the opponent. We motivated fully-nested
I-POMDPs by introducing PO-Nim, an example of a game
where it is not reasonable to assume the level of the opponent
a-priori. We showed how to reduce PO-Nim to a POMDP
with an augmented state space, and explained how to tackle
the turn-based nature of the game. We showed experimentally
that it is possible to solve a level-k fully-nested PO-Nim I-
POMDP using SARSOP for relatively large values of k.

Extensions to this work could formally explore which types
of games yield small finite-state controllers without having to
resort to more sophisticated solver techniques like interactive
or bounded policy iteration. On the applied side, more complex
turn-based games with partial observability such as Stratego
or Battleship offer similar dynamics to PO-Nim with a much
larger physical state-space. It is likely that other techniques
would be required to solve either game as a fully-nested I-
POMDP.

In solving a level-k I-POMDP, we defined the initial belief
over the level of the opponent as a uniform distribution
over all lower-level opponents. It would be interesting to
experimentally obtain a good prior over the possible levels of
a human opponent. This could be done by recording a large
number of human PO-Nim games and leveraging our solved
level-k policies to fit the data to a distribution over k by using
Bayesian parameter learning.

A third extension to our work would involve formalizing I-
POMDPs with stochastic policies. Playing against the subin-
tentional level-0 is difficult because state transitions are not
determinsic. If we allow for probabilistic actions at each belief
for intentional levels, we may be able to develop policies that
higher-level opponents find harder to beat.
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S (3,3,true,true,0,1) 1
A (false,1)

S (0,2,true,true,0,1) 1
A (false,1)

o (0,true,true) 0.2

S (1,2,true,true,0,1) 1
A (false,2)

o (1,true,true) 0.2 S (2,2,true,true,0,1) 1
A (false,3)

o (2,true,true) 0.2

S (3,0,true,true,0,1) 0.5
A (true,3)

o (3,true,true) 0.4

S (won,0,1) 1
A (false,1)

o (0,true,false) 1

o (0,true,false) 1

S (1,2,false,true,0,1) 1
A (false,2)

o (1,false,true) 0.2

S (0,2,false,true,0,1) 1
A (false,1)

o (0,false,true) 0.2 S (2,2,false,false,0,1) 1
A (false,3)

o (2,false,false) 0.2

S (2,0,false,true,0,1) 0.5
A (true,2)

o (2,false,true) 0.4

o (0,true,false) 0.5S (1,0,false,true,0,1) 1
A (false,1)

o (1,false,true) 0.167

S (2,0,false,true,0,1) 1
A (true,1)

o (2,false,true) 0.167

S (3,0,false,false,0,1) 1
A (true,2)

o (3,false,false) 0.167

o (0,true,false) 1

o (0,true,false) 1

o (0,true,false) 1

o (1,false,true) 0.2 o (0,false,true) 0.2

o (2,false,false) 0.2

o (2,false,true) 0.4

o (0,true,false) 0.5 S (2,0,false,false,0,1) 1
A (true,1)

o (2,false,false) 0.333 o (1,false,true) 0.167

o (0,true,false) 1

S (lost,0,1) 1
A (false,1)

o (0,false,true) 1 o (0,true,false) 1

o (0,false,true) 1

o (0,true,false) 1

Fig. 6. Finite-state controller for level 11 on a N = 3 board. At level 11, the opponent is assumed to be 02. Transitions are highlighted for a losing game
against the FSC for level 22, shown in Figure 2. States are labeled (nown, nopp, succown, succopp, l, b) where succown indicates whether the player’s last move
succeeded, succopp whether the opponent’s last move succeeded, l is the level of the opponent, and b is the opponent’s belief as a discrete index into their
finite-state controller. Actions and observations are labeled as in Figure 1.



S (3,3,true,true,0,1) 1
A (false,1)

S (0,3,true,true,0,1) 1
A (false,2)

o (0,true,true) 0.167

S (1,3,true,true,0,1) 1
A (false,3)

o (1,true,true) 0.167S (2,3,true,true,0,1) 1
A (false,1)

o (2,true,true) 0.167

S (3,0,true,true,0,1) 0.333
A (true,3)

o (3,true,true) 0.5

S (won,0,1) 1
A (false,1)

o (0,true,false) 1

o (0,true,false) 1

S (0,2,true,true,0,1) 1
A (false,1)

o (0,true,true) 0.2S (2,2,true,false,0,1) 1
A (false,3)

o (2,true,false) 0.2

S (1,2,true,true,0,1) 1
A (false,2)

o (1,true,true) 0.2

S (2,0,true,true,0,1) 0.5
A (true,2)

o (2,true,true) 0.4

S (0,1,true,true,0,1) 1
A (false,1)

o (0,true,true) 0.0667

S (1,0,false,true,0,1) 1
A (false,1)

o (1,false,true) 0.111

S (2,0,false,true,0,1) 1
A (true,1)

o (2,false,true) 0.111

S (3,0,false,false,0,1) 1
A (true,2)

o (3,false,false) 0.111

S (won,0,1) 0.556
A (false,1)

o (0,true,false) 0.6

S (lost,0,1) 1
A (false,1)

o (0,false,true) 1

o (0,true,false) 1

o (0,true,false) 1

S (2,2,false,false,0,1) 1
A (false,3)

o (2,false,false) 0.2

S (0,2,false,true,0,1) 1
A (false,1)

o (0,false,true) 0.2

S (1,2,false,true,0,1) 1
A (false,2)

o (1,false,true) 0.2

S (2,0,false,true,0,1) 0.5
A (true,2)

o (2,false,true) 0.4

o (0,true,false) 1 o (0,true,false) 0.5S (2,0,false,false,0,1) 1
A (true,1)

o (2,false,false) 0.333 o (1,false,true) 0.167

o (2,false,false) 0.2

o (0,false,true) 0.2 o (1,false,true) 0.2 o (2,false,true) 0.4

o (0,true,false) 1 o (0,true,false) 1 o (0,true,false) 0.5

o (2,false,false) 0.333 o (1,false,true) 0.167

o (0,true,false) 1 o (0,false,true) 1 o (0,true,false) 1

o (0,false,true) 1

o (0,true,false) 1o (0,true,false) 1

Fig. 7. Finite-state controller for level 12 on a N = 3 board. The opponent is 01. The initial state is a dummy state: we cannot act until 01 has moved, at
which point we receive the first observation. Beliefs, actions, and observations are labeled as in Figure 6.



S (3,3,true,true,0,1) 0.5
A (false,1)

S (0,2,true,true,0,1) 1
A (false,1)

o (0,true,true) 0.1

S (1,2,true,true,0,1) 1
A (false,2)

o (1,true,true) 0.1

S (2,2,true,true,1,4) 0.833
A (true,2)

o (2,true,true) 0.6

S (3,0,true,true,0,1) 0.5
A (true,3)

o (3,true,true) 0.2

S (won,0,1) 1
A (false,1)

o (0,true,false) 1o (0,true,false) 1S (0,1,true,true,0,1) 1
A (false,1)

o (0,true,true) 0.0333

S (0,2,true,false,1,11) 0.862
A (false,1)

o (0,true,false) 0.967

o (0,true,false) 0.5 S (3,0,false,false,0,1) 1
A (true,2)

o (3,false,false) 0.167

S (1,0,false,true,0,1) 1
A (false,1)

o (1,false,true) 0.167

S (2,0,false,true,0,1) 1
A (true,1)

o (2,false,true) 0.167

o (0,true,false) 1S (lost,0,1) 1
A (false,1)

o (0,false,true) 1

S (won,1,11) 0.862
A (false,1)

o (0,true,false) 1

o (0,true,false) 1 o (0,false,true) 1

o (0,true,false) 1o (0,false,true) 1 o (0,true,false) 1

Fig. 8. Finite-state controller for level 21 on a N = 3 board. The opponent is either 02 or 12 with equal probability. Beliefs, actions, and observations are
labeled as in Figure 6.



S (3,3,true,true,0,1) 0.5
A (false,1)

S (0,3,true,true,0,1) 1
A (false,2)

o (0,true,true) 0.0833

S (1,3,true,true,0,1) 1
A (false,3)

o (1,true,true) 0.0833

S (2,3,true,true,1,1) 0.857
A (false,1)

o (2,true,true) 0.583

S (3,0,true,true,0,1) 0.333
A (true,3)

o (3,true,true) 0.25

S (2,0,false,false,0,1) 1
A (true,1)

S (won,0,1) 1
A (false,1)

o (0,true,false) 1

S (1,0,false,true,0,1) 1
A (false,1)

S (lost,0,1) 1
A (false,1)

o (0,false,true) 1

S (2,0,false,true,0,1) 1
A (true,1)

o (0,true,false) 1

S (3,0,false,false,0,1) 1
A (true,2)

o (0,true,false) 1

o (0,true,false) 1 o (0,true,false) 1 S (0,2,true,true,0,1) 1
A (false,1)

o (0,true,true) 0.0286

S (2,2,true,false,1,4) 0.968
A (true,2)

o (2,true,false) 0.886

S (1,2,true,true,0,1) 1
A (false,2)

o (1,true,true) 0.0286

S (2,0,true,true,0,1) 0.5
A (true,2)

o (2,true,true) 0.0571

o (1,false,true) 0.111o (2,false,true) 0.111 o (3,false,false) 0.111

S (0,1,true,true,0,1) 1
A (false,1)

o (0,true,true) 0.0667

S (won,0,1) 0.556
A (false,1)

o (0,true,false) 0.6

o (0,false,true) 1

o (0,true,false) 1

o (0,true,false) 1

o (0,true,true) 0.00645

S (0,2,true,false,1,10) 0.974
A (false,1)

o (0,true,false) 0.994

o (0,true,false) 1

o (2,false,false) 0.333 o (1,false,true) 0.167

o (0,true,false) 0.5

S (won,1,10) 0.974
A (false,1)

o (0,true,false) 1

o (0,true,false) 1o (0,false,true) 1

o (0,true,false) 1

Fig. 9. Finite-state controller for level 22 on a N = 3 board. The opponent is either 01 or 11 with equal probability. The initial state is a dummy state: we
cannot act until the opponent has moved, at which point we receive the first observation. Transitions are highlighted for a winning game against the FSC for
level 11, shown in Figure 2. Beliefs, actions, and observations are labeled as in Figure 6.


