Style Transfer with Non-Parallel Corpora

Gus Liu

Pol Rosello

Ellen Sebastian

{gusliu, prosello, ellens2}@stanford.edu

Abstract

We investigate the problem of style trans-
fer: Given a document D; in a style .S1, and
a separate style Sy, can we produce a new
document Dy in style S2 which preserves
the meaning of D;? We describe a novel
style transfer approach that does not rely
on parallel or pseudo-parallel corpora, mak-
ing use of anchoring-based paraphrase ex-
traction and recurrent neural language mod-
els. We analyze our results qualitatively and
quantitatively. Our approach suffers when
there is a lack of topical overlap between
documents in both styles. We suggest ways
in which our system could be improved.

1 Introduction & Problem Statement

Recently, the idea of style transfer has received con-
siderable attention, especially in the field of com-
puter vision. |Gatys et al. (2015) use neural net-
works to combine the content of one image and the
style of a second image to produce a new image.
This makes it possible, for example, to transfer the
painting style of Van Gogh onto a vacation picture
with high perceptual quality. However, the tech-
niques explored in their paper are not directly appli-
cable to the domain of natural language processing.

A successful style transfer model (as applied to
natural language processing) would take as inputs a
document D in a style .S7 and a separate style So,
and would produce a new document D5 in the style
of Sy which preserves the meaning of D;. Style-
transfer models would be useful in automating tasks
such as author obfuscation, passage simplification,
or publishing a document to multiple audiences. To
our knowledge, past approaches to this task have
used a supervised approach, making use of paral-
lel or pseudo-parallel monolingual corpora. How-
ever, in most cases, parallel text between two styles
does not exist. Therefore, in our work, we attempt
to perform style transfer by training our model on

non-parallel input corpora in both styles.

In this paper, we will detail our progress toward
this goal, which involves training neural language
models on corpora of various styles and implement-
ing and adapting Pasca & Dienes (2005)’s anchor-
based paraphrase extraction algorithm. Our ap-
proach is divided into two tasks:

1. Create a database of paraphrases
{(palapbl)v--a (panapbn)}, where Pai s ex-
tracted from style S; and pp; from Sp. We
initially build a paraphrase-extraction algorithm
based on the work of Pasca & Dienes, but
ultimately use pre-extracted paraphrases from
PPDB (2013)) in order to increase the number
of paraphrases available for Task 2.

2. Given a new text, replace some instances of
phrases in {pq1, ..., Pan } With their correspond-
ing phrase in {pp1, ..., pp2} in the optimal way
to preserve meaning and transfer style. We
approach this task by choosing a series of re-
placements that maximize the paraphrased sen-
tence’s probability under a language model of
So. This is a difficult and computationally-
intensive problem because many replacements
overlap with each other and the space of possi-
ble replacement combinations is very large.

2 Literature Review

Style transfer is a relatively unexplored space.
To our knowledge, only one paper has attempted
style transfer: Xu (2012) used parallel Shake-
speare/modern English text to build a bidirectional
style transfer system using typical machine transla-
tion algorithms. We note that in our work, since we
do not use parallel text, we cannot use traditional
machine translation algorithms that rely on the ex-
istence of a dataset of sentences in both styles (or
languages). Traditional evaluation metrics such as
BLEU are therefore also unavailable to us.
Although style transfer has not been studied ex-
tensively, the related task of paraphrase extraction

has. All paraphrase extraction systems use either
parallel text (e.g. multiple translations into English
of a single non-English text) or pseudo-parallel text
(e.g. news articles about the same event). For ex-
ample, Barzilay & McKeown (2001)’s algorithm
uses aligned sentences from parallel corpora, para-
phrase pair seeds, contextual features, and scoring
for positive and negative strength of those features.
Barzilay & Lee (2003) generate paraphrases of
novel input sentences using a “word lattice” algo-
rithm. Instead of parallel data, they use “compara-
ble” corpora, which is closer to our task. [Pasca &
Dienes (2005)’s work, which uses pseudo-parallel
corpora and an anchoring system based on shared
paraphrase surroundings, forms the basis of our
paraphrase extraction system, which we discuss in
depth in Section H]

3 Data Collection

Our first task was to collect a number of
stylistically-distinct parallel and non-parallel cor-
pora on which to train and evaluate our algorithms.

Since Donald Trump’s style was the original
inspiration for our project, we collected a num-
ber of campaign speeches from [WhatTheFolly.com
(2016). The speeches were sanitized of annotations
and words spoken by anyone other than Donald
Trump. They total 422,653 words.

We downloaded 3 versions of the Bible from
Christian Classics Ethereal Library (2015). These
corpora are useful because they are parallel at the
word and phrase level. They provide the opportu-
nity to evaluate our algorithms both on completely
parallel data and on non-parallel topically related
data (by using non-overlapping subsets of each ver-
sion as the source and destination styles).

Finally, we downloaded 12 Charles Dickens nov-
els and 11 Mark Twain novels from [Project Guten-
berg (2016). These total 935,614 words for Twain
and 2,710,985 words for Dickens. They provide the
opportunity to evaluate our algorithm on very large
non-parallel and unrelated corpora.

We also make use of an existing paraphrase
database calledPPDB (2013). We used the “small”
version of PPDB 1.0, which contains the 6.8 million
better-scoring, high-precision paraphrase rules in
the full database’s 169 million rules. The database
contains lexical paraphrases (i.e. one word to
one word), phrasal paraphrases (i.e. multi-word
phrases), as well as syntactic paraphrases which
contain nonterminals.

4 Methods

4.1 Anchoring algorithm for paraphrase
extraction

We implemented a basic “anchoring” algorithm for
paraphrase extraction, adapted from Pasca & Di-
enes (2005). It operates on the assumption that
if p, € S1 and p, € So appear surrounded by the
same words, they are likely paraphrases. A large
number of n-grams are separated into 3 portions.
The first and last portion are the “anchor text”,
and the middle portion is the “variable fragment”,
which is a potential paraphrase.

For example, if “Hillary Clinton defeated Bernie
Sanders” appeared in S and “Hillary Clinton Tri-
umphed over Bernie Sanders” appeared in So, then
we would mark (defeated, triumphed over) as para-
phrases.

The unoptimized algorithm is summarized as fol-
lows:

1. Parse 2 large corpora into sentences, then further
into tokens using NLTK tokenization. Prepend
each sentence with a sentence-start tag “$S” and
append with a sentence-end tag “$E”.

2. Extract all possible n-grams of length 2L, +
min, to 2L. + max, from each corpus, where
no ngram can overlap separate sentences. Here,
L. is the length of the anchor, and 2 or 3 is used
in our analyses. M<in, and max, are the min-
imum and maximum paraphrase length, here 1
and 5.

3. Extract all possible (anchor, variable fragment)
pairs from the sequence of n-grams. For each
n-gram, the anchor is defined as the first and
last L. tokens, and the variable portion as the
middle min, to max, tokens. Collect all pairs
(v1, vo) of variable fragments appearing at least
once with the same anchor fragment. vy is con-
strained to come from S; and v from Ss.

4. Output the pairs (v1, v2) ranked by the number
of times they appear with the same anchor text.

The results of this unoptimized algorithm appear
in Table |If together with the results from our op-
timized algorithm.

4.1.1 Optimizations on Paraphrase extraction

The major weakness of the unoptimized anchoring
algorithm was insufficient overlap of anchor text in
nonparallel, unrelated corpora. We therefore made
several attempts to “genericize” the anchor texts
(while leaving variable portions intact).

First, we note that unlike in [Pasca & Dienes
(2005)’s corpus of related news articles, the named
entities, such as people and places, vary greatly be-
tween unrelated texts. While a corpus of Twain
novels may talk about people named Huck and
places like Mississippi, a corpus of Dickens nov-
els makes no mention of theses specific named en-
tities. We therefore used a named-entity tagger to
replace named entities with their tags. Words that
are not tagged as named entities remain intact. This
replacement is done only on anchors, not on vari-
able fragments on n-grams. As a result, extracted
paraphrases cannot contain named-entity tags.

Next, we took genericizing even further by re-
placing anchor words by their part of speech tags.
As expected, this took our approach too far; anchor
text overlap became foo common, and the results
were effectively a list of the most common words
in the corpora, such as “a”, “the”, “of”, “in”, “and”,
etc.

We also tried not replacing stop words, and
only replacing non-stop words by their parts of
speech,with the understanding that stop words
would likely be common in both corpora. We used
a relatively liberal stopword list from NLTK of 158
words. The results with this change were similar to
above.

Realizing that requiring identical anchor text
produces too few matches, and using part-of-
speech (POS) tags or named-entity tags (NET) pro-
duces too many, we tried to find a middle road
by requiring anchor similarity instead of identi-
cal anchors. For pair of anchor/variable frag-
ments (a1, as,v1,v2), we find a similarity metric
sim(ay, az), and add it to the score of (vy,v2). So
the total score of (v, v9) as a paraphrase pair is:

Score(vy,v2) = Z

a1 Evy .anchors
a1 Evsz.anchors

sim(ay, ag).

We define sim so that it is usually O in order to
increase computational efficiency of our program

by reducing the space of paraphrase pairs.
One possibility, based on GloVe similarity of
words in the anchor, is:

la1]
sim(ai,a2) = Z Si)]
i=0
1 if a1; = az;
maxz(0.75, glv(ai, az)) if a1;.NET = a2; .NET
glv(ai,az) if glv(ai,a2) > 0.9
0 otherwise

S; =

€]

where glv is the cosine similarity of the GloVE vec-

tors of a1 and as.

We hypothesize that many of the poor results of
paraphrase extraction stem from inappropriately fa-
voring paraphrase pairs that appear multiple times
with dissimilar or trivial anchor phrases (e.g. many
anchor phrases containing the word “the” in the
same positions, leading to a sim(aq, ag) of at least
1.0). We addressed this problem by increasing
the GloVe cutoff to 0.9, and adding an inverse-
document-frequency term to each word that we
found, so that:

lay|
SZ'TTL((]J7 CLQ) = Zidf(Sl,al) X de(SQ, a2) X S; (3)
i=0
1 if a1y = az;
max(0.75, glv(ai,az)) if a1;.NET = a2;.NET
glv(ai,asz) if glv(a1,az2) > 0.9
0 otherwise

S; =

“

Unfortunately, as summarized in Table [I} our
“improvements” to anchor text overlap actually
seem to greatly decrease the quality of extracted
paraphrase. Furthermore, the quantity of para-
phrases extracted is upper bounded by PPDB, and
the fact that PPDB’s paraphrases are not associated
with style could be compensated for with a good
algorithm for choosing the best of a set of possible
paraphrases. We therefore decided to use PPDB as
our source of paraphrase pairs and focus on choos-
ing the best out of a large set of potential style trans-
lations.

4.2 Language Models

In order to capture the differences between author
styles, we train character-level language models on
several sources of text, each from a different au-
thor. A language model learns a probability distri-
bution over sequences of characters. As it processes
a sentence, it returns an estimate for the probabil-
ity that each character will occur given all previous
characters before it. Each of our language mod-
els is a LSTM recurrent neural network with two
layers of 128 hidden units each using the tanh non-
linearity. The networks are trained for 50 epochs
on each dataset using the Adam update rule from
Kingma & Ba (2015) with a learning rate of 0.002
and cross-entropy loss. The learning rate is decayed
by a factor of 2 every 5 epochs.

The trained language models can then be used
to evaluate the probability of a particular sen-
tence being produced by each author. Since the
cross-entropy loss maximizes the log-likelihood
of the correct character, and P(cj...c,) =

[T, P(cilei...ci—1), we can sequentially sum the
network’s scores for each character in a sentence to
provide a score for the sentence based on an au-
thor’s language model. We can use these scores
to choose between possible paraphrases generated
using the methods in Section by selecting the
paraphrase with the highest score according to an
author’s model.

4.3 Style transfer

Once we obtain a set of paraphrase pairs, the chal-
lenge is to choose the optimal set of replacements of
phrases in input sentence to maximize style transfer
while retaining meaning. As a baseline, we iter-
ate through every sentence in the text to be para-
phrased. For each sentence, we generate a set
of candidate paraphrases and select the paraphrase
that maximizes the probability of the character se-
quence according to the language model of the tar-
get style. This is summarized in Algorithm|I]

Given a sentence, we compute candidate para-
phrases by polling our database of extracted para-
phrases (in our case from PPDB) with every word-
level n-gram in the sentence for all possible values
of n. For every match in the database, we add to the
list of candidate paraphrases the original sentence
with the match replaced with all possible para-
phrase targets in the database. As an example, given
the sentence “This is great”, we first add the orig-
inal sentence to the list of candidate paraphrases,
in case it is already in the target style. We then
poll PPDB with “This”, “is”, “great”, “This is”, “is
great”, and “This is great” and add more candidate
paraphrases to the list. For example, if “great” re-
turns “really great”, “very large”, and “wonderful”
as some of its paraphrases, we add “This is really
great”, “This is very large”, and “This is wonder-
ful” to the list of candidate paraphrases. We then
select the paraphrase in the list of candidate para-
phrases which scores the highest according to the
target style language model.

The issue with this approach is that it only per-
forms one paraphrase replacement per sentence.
With long sentences, most of the original text is left
untouched, making it hard to change the style of the
original sentence. To solve this issue, we split each
sentence up into multiple fragments, paraphrase
each fragment as before (by polling for n-gram
replacements and selecting the highest-scoring re-
placement), and concatenate the paraphrased frag-
ments together. Ideally, we would generate can-
didate paraphrases for each fragment and evaluate

Algorithm 1 Style transfer algorithm
Require:
T, a source text
D, a paraphrase database
F, a sentence splitting function
M, a language model for the target style
procedure STYLETRANSFER(T,D,F,M):
T+ «” > The paraphrased text
for each sentence S € 17" do
S’ + “” b The paraphrased sentence
for each fragment f € F'(S) do
C < {f} © The set of candidates
for each n-gram g € f do
R < Dj[g| > Find replacements
forr € Rdo
¢ + f with g replaced by r
C+ CU{c}
J* < argmax .- M(c)
S’ < concat(S’, f*)

T’ < concat(T”, S")
return 7"

the score of all sentence paraphrases formed by the
Cartesian product of the fragments’ sets of candi-
date paraphrases. However, this results in far too
many candidate paraphrases for a given sentence.
As an example, if a sentence is split into 5 frag-
ments with 10 paraphrases each, we would have to
evaluate 10° paraphrases for the sentence instead of
50.

We consider three approaches to splitting sen-
tences into fragments. Each approach begins by
tokenizing the sentence into a list of words; then,
it decides how to break this list up into fragments.
In the first and simplest approach, we split all sen-
tences into fixed-size fragments of words. This is
problematic because it ignores the structure of the
sentence, possibly splitting phrases into two sep-
arate fragments. This makes the replacement of
the phrase as an atomic entity impossible. It also
leads to issues whenever one half of the phrase is
paraphrased independently, making the final para-
phrased sentence nonsensical.

A second approach is to split the sentence ac-
cording to its grammatical structure as evaluated by
a CKY statistical parser. Our aim was to take ad-
vantage of different phrases of a sentence, specifi-
cally verb phrases and noun phrases. We found that
PPDB contained many verb phrase paraphrases, as
well as a substantial number of noun phrase para-
phrases. Thus, we parse each sentence into an

NLTK tree, extract noun and verb phrases into frag-
ments such as speak to or violent conflict, and use
the rest of the input sentence as fragments.

A third approach is to split the sentence at the
occurrence of stop words such as and, or, that and
which, as well as at punctuation like commas, semi-
colons, or dashes. This has the advantage of rarely
splitting up phrases across fragments. However, for
longer sentences without many stop words, it may
not provide enough fragments. As such, it is a more
conservative approach that will lead to fewer para-
phrase replacements per sentence than our parse
splitting approach.

To evaluate our eventual style transfer method,
we implemented a simple baseline style transfer
system that substitutes each word in the source text
with a synonym (or itself) with the highest occur-
rence frequency in the target text. We used synsets
from WordNet to find the set of synonyms for each
word.

5 Results

5.1 Paraphrase extraction

Paraphrase extraction results are summarized in Ta-
ble

5.1.1 Single Corpus Paraphrase Extraction

This system was quite accurate at extracting non-
trivial paraphrase pairs from both the New Ameri-
can Standard Bible and the Trump campaign speech
dataset. The Trump dataset, while interesting, is
simply not large nor repetitive enough enough to
generate many interesting paraphrases other than
(build a wall, have a wall) or (make America, make
our country).

5.1.2 Parallel & Pseudo-Parallel Corpus
Paraphrase Extraction

We adapted the algorithm to extract paraphrase
pairs where the first member was from one dataset
and the second member was from another dataset.
We used the King James vs. New American Stan-
dard Bible as a parallel dataset. This produced ac-
curate, but highly redundant results.

Next, we made the problem slightly harder by
using a non-parallel, but topically-related dataset.
The two corpora were the King James and New
American versions of the bible, but using disjoint
subsets of the bible from each version. Compared
to the results in the parallel case, there were much
fewer paraphrases generated, and the paraphrases
that were noted had a lower frequency. On the plus

side, the paraphrases were less obvious (e.g (for-
tified, fenced)), less repetitive (fewer versions of
jehovah/lord), and had greater structural variation
(e.g (saith jehovah of hosts, saith lord) and (land of

egypt, egypt)).

5.1.3 Unrelated Non-Parallel Corpus
Paraphrase Extraction

Finally, we tested the algorithm on completely non-
parallel datasets, comparing the works of Dickens
vs. Twain.

The algorithm was not very successful on this
non-parallel datasets. Using L. = 3, no paraphrase
pair was observed with frequency higher than 1,
and those that were observed were almost com-
pletely wrong (e.g. (little thing at, beneficial to any-
body above). Using L. = 2, most paraphrases were
not useful (e.g. (we, i), and (i, it)), but a few syn-
onyms ((want, wish)) were observed.

To address the bad results in the non-parallel
case, we used a variety of heuristics, described in
Section to increase anchor-text overlap be-
tween corpora. These heuristics include transform-
ing anchor texts into their named-entity or part-of-
speech tags, and requiring similar rather than iden-
tical anchors.

These heuristics did greatly increase the number
of paraphrase pairs extracted. For example, sim-
ply replacing named entities by their named-entity
tags increased the number of paraphrase pairs from
68,087 to 3,351,406 for the non-parallel Bible cor-
pus. Although the program was too slow to run the
entire Dickens/Twain corpus under the anchor sim-
ilarity heuristic, the number of paraphrases per sen-
tence increased from 13 to 7148.

However, these heuristics did not significantly
increase the quality of extracted paraphrases. Using
named-entity recognition or part-of-speech tagging
did not seem to affect the quality of extracted para-
phrases; these paraphrases suffer from the same is-
sues of incorrect or uninteresting paraphrases as the
baseline results.

Using the anchor similarity heuristic, the algo-
rithm must compare the variable fragments corre-
sponding all pairs of anchor texts with nonzero sim-
ilarity, not just identical anchor texts. As a result,
the algorithm became so slow that we could only
train on randomly-selected 50 sentences from each
corpus. As a result, the extracted paraphrases were
highly biased toward the content of those 50 sen-
tences.

Corpus Algorithm # Sentences # Anchors # Paraphrases Paraphrase examples: (p1, p2, frequency)

(im, were, 10), (just want, want, 6), (our,this, 6), (our, the, 6), (make our, make this, 6),

Trump Single-corpus 45,257 326,420 5,606 (make america, make our country, 4), (make our country, make this country, 4),
(best, greatest), 4), (really want, want, 4), (china, japan, 4), (build a wall, have a wall, 4)
American Standard) (to, unto, 146), (and the, the, 62), (that, which, 62), (god, jehovah, §O), (on, 1.1pon, 52),
Bible Single-Corpus 29,860 2,726,330 221,883 (thy, your, 42), (came to, shall come to, 36), (to the, unto the, 36), (jehovah, jehovah of hosts, 36),
(said, saith, 32), (answered and said, said, 30), (said, said unto him, 24)
American Standard/ 29.860 2726330 (je%hovah, the lord, 2337), ((?fjehovah, of th? lord, 726), (that, which, 365?, (saith jehovah,
King James parallel Two-corpus 34734 3.301.026 624,412 s.alth the lord, 226), (thy, thine, 195), (unto jehovah, unto the lord, 162), (]ghovah, god, 148),
(jehovah thy, the lord thy, 143), (will, shall, 143), (show, shew, 86), (my, mine, 86), (to, unto, 86)
American Standard/ 13.854 1311616 thpvah, the lord, 23), (shall‘ come to, came to, 11), (saith, said, 8), (shall come, came, 7),
King James non-parallel Two-corpus 13216 1,346,600 68,087 (f)f_]ehovah, of the lord, 6), (jehovah of host, the lord, 6), (twelve thlousar-1d of, and out of, 6),
(jehovah of hosts the, the lord, 6), (angel, king, 5), (answered and said, said, 5)
150.802 0.392.461 (is, was, 257), (i, he, 157), (i, we, 78), (she, he, 74), (you, i, 68), (am, was, 64), (i, they, 52),
Dickens/Twain Two-corpus 47 0’72 3,408’523 2,727,004 (there, it, 49), (he, we, 49), (have, had, 45), (they, he, 43), (can, could, 42), (i, she, 42),
’ e (should, would, 39), (was not, was, 39), (has, had, 36), (had, was, 36), (dont, do not, 34)
(i, he, 114), (he, i, 73), (is, wa, 66), (i, we, 62), (you, i, 58), (she, he, 53), (am, wa, 38),
Dickens/Twain ;Zg;‘;;ﬁ’;s * 4112(1)’785 8 g;;?;g; 1443058 (can, could, 31), (she, they, 29), (they, he, 29), (wa, am, 28), (you, we, 28), (wish, want, 27),
(we, he, 24), (did, do, 24), (he, you, 24), (you, they, 23), (know, think, 23), (dont, do not, 23)
150.802 9.318.069 and, said, 622), (and, and mr., 316), (not, n’t), 308), (was, is, 293), (is, was, 229), (he, i, 197),
Dickens/Twain Two corpus + NER 47 672 3’397’346 437,511 ((n’t, not, 186), (and, or, 160), (did, do, 154), (and, of, 151), (i, he, 136), (john, and, 133),
’ o (you, i, 116), (and, esquire, 112), (we, i, 109), (he, she, 94),(and, and mr, 81), (sir, mr., 79)
American Standard/ 29.782 1.580.464 (begat, and, 18143), (son, daughter, 13238), (daughter, son, 12303), (and, begat, 12119),
King James Two corpus + NER 22’197’ 1’225’125 3,351,406 (sons, son, 6116), (children, son, 5942), (god, son, 5857), (son, king, 5213), (son, sons, 5051), (son,
non-parallel ’ M father, 4783), (king, son, 4272), (son, wife, 3605), (brother, son, 3360), (jehovah, the lord, 3096)
5000 49376 (a, the, 41168), (the, a, 37719), (and, of, 21597), (the, his, 19742), (of, in, 18728), (in, of, 18571),
Dickens/Twain Two-corpus + POS tags 5000 49’i 17 9,471,842 (of, and, 17658), (his, the, 10161), (of, with, 9523), (a, his, 9267), (the, her, 7671), (of, on, 7197),
’ (and, in, 6883), (of, to, 6868),(of, at, 6326), (the, my, 6278), (for, of, 6155), (with, of, 5600)
' ' POS tags, 5000 166883 (and, of, 5113), (of, and, 4481), (the, a, .4392), (of, in, 4958), (a, the,‘4057), (in, of, 3560),
Dickens/Twain stopwords intact 5000 146570 941,717 (of, on, 1748), (of the, of, 1488), (of, with, 1474), (and, in, 1411), (his, the, 1282), (of, at, 1274) (of,
to, 1158), (of, of the, 1150), (to, of, 1069), (in, and, 1055), (a, his, 919), (on, of, 917), (the, her, 909)
L (a, the, 190.6), (and, the, 175.0), (the, i, 153.6), (and, in, 142.2), (the, to, 130.8), (and, i, 129.5),
Dickens/Twain %ll‘r’evs‘;(sﬂlﬁ(l)"?;y 28 Z;ﬁ 610,155 (a,i, 128.5), (and, to, 12.72), (the, and, 123.3), (the, a, 109.0), (the, in, 104.9), (to, the, 97.9)
: (i, the, 86.60), (and, that, 84.2), (a, to, 81.3), (and, with, 79.8), (a, and, 78.3), (a, in, 78.1)
. had, i, 4.6), (i, place, 4.5), (left, at, 4.5), (i left, place at, 4.5), (i, took place, 4.5),
Dickens/Twain GloVe Similarity+IDF, - 50 3217 714,833 Ehad disa}fgee(lrefi at, i 4.55)) ((i intervies\x)/ l(ook plfl)ce 4.5). (}fzd(disappezred i 45)5)
Threshold=0.9 50 2414 ’ ” e ? ? - ’

(when i, interview took place, 4.5), (it had, where i had, 4.4), (had disappeared at, i had passed, 4.4)

Table 1: Anchor-based paraphrase extraction results. In the second column, “NER” indicates that anchor
words are transformed into their named-entity tag, if one exists. “POS tags” indicates that anchor words
are transformed into their part-of-speech tag. “POS tags, stop words intact” indicate that all anchor words
except for stop words have been transformed into their POS tag. “GloVe Similarity” means that GloVe
similarity was used for anchor matching as in Eq. 3. “Threshold” refers for the lowest GloVe similarity
that can contribute to a similarity score. “IDF” indicates that IDF discounting is used as in Eq. 4.

5.2 Language models mand, for his news more will go do the return to

To verify that our language models learn the stylis- do your courts. ...

tic subtleties of each author, we generate new text
by sampling one character at a time from the net-
work’s learned probability distribution. The follow-
ing are samples generated by our language models:
Donald Trump:

We have to do this. We are going to be a great
deal. But I want to thank the best, and they said I
want to take a lot of the military, and it’s a good
better than anything to win a lot of millions of
money and some of the best and they have to
pay to that was a great campaign

William Shakespeare:

I will fair and be born. The play is a beast of my
wise in the honor in a fair of his some hear the
words. What thou mad to your grace in the com-

Overall, the LSTM language models seem to
capture the style of their intended authors. Since we
use these language models to choose between pos-
sible paraphrases, we also compared the scores of
various phrases under each style’s language model
to verify our assumptions about which phrases are
more likely in each style. Table [2] shows example
paraphrase scores for each language model. The
language model scores highest for the paraphrase
which most closely resembles the style of the lan-
guage model’s author.

5.3 Style transfer

We compare the results of our style transfer ap-
proaches in Table 3| For our evaluation, we chose

Phrase Trump Twain Shakesp None Stopword Parse

You are really 6485 5555 4723 Lragments 100 284 621

tremendous per sentence

You are beautiful 5.175 5.728 4911 Candidates

Thou art lovely 4515 4416 5.238 per fragment 83.25 29.84 1644
Candidates 8325 8461 102.10

Table 2: Raw scores for various phrases under
language models trained on Trump, Twain, and
Shakespeare corpora.

Transformation Trump Twain Shakesp
Original 6.252 6.523 5.684
Baseline synonym 6.242 6.469 5.707
replacement

Parse spthmg + 6.556 6.656 5.843
paraphrasing

Stopword splitting 6.653 6.753 5.864

+ paraphrasing

Table 3: Raw scores for Martin Luther King Jr.’s
“I Have a Dream” speech before and after differ-
ent style transfer approaches under each style’s
language model, using PPDB as the paraphrase
source.

Martin Luther King Jr’s “I Have a Dream” speech
because it is written in modern English and contains
a variety of literary devices.

Our naive baseline style transfer approach using
synonym substitution performs poorly, as expected.
Since the baseline approach does not rely on the
language model of the target author (rather, it re-
lies on their word usage frequency), the scores are
barely improved, if at all. Frequently, words had
no synonyms in WordNet, or synonyms were sub-
stituted that didn’t preserve the original meaning of
the word, such as “queen” to “king” and “father” to
“mother”. We found that grammar and syntactical
correctness suffer, and style transfer is rarely ob-
served since replacements based on frequency fa-
vor replacements like “was” to “be”, which are a
feature of the English language and not characteris-
tic of any speaker’s style.

We found that splitting sentences along noun and
verb phrases using a sentence parse had comparable
results to splitting at the occurrence of stop words,
although splitting at stop words seemed to result
in consistently higher language model scores. Be-
cause of its more fine-grained nature, splitting ac-

per sentence

Table 4: Average statistics of different sentence
fragmentation methods on “I Have a Dream”.

cording to the parse tree resulted in more fragments
per sentence and thus more paraphrase substitutions
(see Table M), losing more of the original meaning
of the sentence. Ideally, more substitutions would
capture more of the target style, presenting a trade-
off between preservation of original meaning and
style transfer. Unfortunately, grammar and syntac-
tical meaning also suffer from too many paraphrase
substitutions, suggesting that parse splitting is sub-
optimal and that the more conservative stop word
splitting approach may work better in practice.

Examples of style-transferred sentences using
various methods and target styles are shown in Ta-
ble 5] Interesting replacements include: chang-
ing “justice” to “administration of justice” (Trump),
“the judge” (Twain), and “the courts” (Shake-
speare); “check” to “cheque” (Shakespeare); “It is
obvious” to “That’s obvious” (Trump) and “It is
clearly evident” (Twain); and “promise” to “not
promising anything” (Trump). However, many of
the generated candidate paraphrases are grammati-
cally incorrect or change the meaning of the orig-
inal sentence. While the first issue can be miti-
gated by filtering sentences that cannot be parsed,
the second is more problematic. Ideally, incor-
rect paraphrases could be fixed with a more accu-
rate paraphrase databases, but in many cases the
validity of a paraphrase replacement is dependent
on sentence structure and context. Another visi-
ble issue with our approach is that even if our cho-
sen replacement is valid, it does not always result
in recognizably-transferred style. We believe this
is because an important source of style is derived
from sentence structure, which our approach does
not modify significantly. While the language model
is capable of selecting the paraphrase which more
closely resembles the typical structure in the tar-
get style, our phrase replacement approach can only
generate candidates which modify sentence struc-

Transformation

Trump

Twain

Shakespeare

Baseline
synonym
replacement

It be obvious today that America have
defaulted on this promissory note.

It be obvious today that America have
default on this promissory note.

It be obvious today that America have
defaulted on this promissory note.

And so, we’ve do to cash this check, a see
that will give us upon need the wealth of
freedom and the security of justice.

And so, we’ve do to cash this check, a see
that will give us upon need the wealth of
freedom and the security of justice.

And so, we’ve do to cash this check, a see
that will give us upon need the wealth of
freedom and the security of justice.

Now be the time to have very the promise
of democracy.

Now be the time to have very the promise
of democracy.

Now be the time to have very the promise
of democracy.

Parse splitting
+ paraphrasing

That’s obvious today that America has
defaulted with respect to this promissory
note.

And so, we do have come to cash this
check, a check that will give the United
States upon demand the riches of their
liberty and the security of justice.

Now that’s the time to be doing real the
’m not promising anything of
democratic politics.

It is clearly evident the present day that
America has defaulted with respect to this
promissory note.

It is very obvious the present day that
America has defaulted with respect to this
promissory note.

And well, then, we’ve come to cash this
check, a check that will give the United
States upon request the riches of freedom
and the security of justice.

And so, we do have come to cash this
check, a check that will give us upon
demand the riches of their liberty and the
security of justice.

Now is the good time to be done very real
the promises of democratic politics.

Now is the high time to are doing very
real the promises of democracy.

Stopword
splitting +
paraphrasing

That’s obvious today that America has
defaulted with respect to this promissory
note.

It is clearly evident today that America
has defaulted with respect to this
promissory note.

It is obvious the present day that America
has defaulted with respect to this
promissory note.

And well, then, we’ve come to the money
this check, control that will give us upon
request the riches of freedom and the
security of administration of justice.

And well, then, we’ve come to the money
this check, control that will give us upon
request the riches of freedom and the
security of the judge.

And well, then, we do have come to cash
this check, a cheque that will give us upon
request the riches of freedom and the
security of the courts.

Now that’s the time to make real the
promises of democracy.

Now that’s the time to make real the
promises of democracy.

Now is the time to make true the promises
of democracy.

Table 5: Style-transfer paraphrases for “It is obvious today that America has defaulted on this promissory
note” (top), “And so, we’ve come to cash this check, a check that will give us upon demand the riches
of freedom and the security of justice” (middle), and “Now is the time to make real the promises of
democracy” (bottom) under each language model using PPDB as the paraphrase source.

ture by expanding or reducing clauses, never adding
or removing clauses or rearranging their order.

6 Conclusion and Future Work

We explored style transfer based on an algorithm
with two steps: paraphrase extraction, and para-
phrase replacement using language models. In
our paraphrase extraction work, we were unable
to overcome the challenge of a small amount of
anchor-text overlap between the two corpora, de-
spite using part-of-speech and named-entity tags
to our advantage. Instead, we used the PPDB
paraphrase database as a source of paraphrases.
However, even with access to a large paraphrase
database, using extracted paraphrases to transform
text is nontrivial, and the task of choosing which
paraphrases to use is delicate and not always suc-
cessful.

As a simple improvement to our work, para-
phrase candidates for sentences which do not have
a plausible syntactic parse could be filtered out.

Also, rather than selecting the highest scoring frag-
ment paraphrases independently, we could select
the highest scoring first fragment, and then seed the
language model with the paraphrased fragment be-
fore evaluating the next fragment’s candidates, and
so on. This would hopefully fix issues where per-
forming multiple replacements renders the structure
of the sentence invalid or incoherent.

Future approaches could explore less rigid para-
phrase approaches that rely on restructuring the
syntax of the sentence rather than performing per-
fragment replacements. Another idea is bootstrap-
ping: after generating some set of paraphrases, we
can replace the source corpus with a paraphrased
version, thereby making the source corpus more
similar to the destination corpus. This would hope-
fully generate a larger set of paraphrases. Evalu-
ating style transfer models quantitatively by asking
humans to rank style-transferred sentences would
also be worth exploring.

References

[Barzilay & Lee 2003] R. Barzilay, L. Lee 2003. A
Neural Probabilistic Language Model. Proceed-
ings of the 2003 Conference of the North Ameri-
can Chapter of the Association for Computational
Linguistics on Human Language Technology, 16-23.
aclweb.org/anthology/N/N03/N03-1003.pdf.

[Barzilay & McKeown 2001] R. Barzilay, K.R. McKe-
own 2001. Extracting Paraphrases from a Parallel
Corpus. Proceedings of the 39th Annual Meeting
on Association for Computational Linguistics, 50-57.
www.aclweb.org/anthology/P01-1008.

[Christian Classics Ethereal Library 2015] H. Plantinga
2015. http://www.ccel.org/ccel/biblel

[Gatys et al. 2015] L. A. Gatys, A. S. Ecker, M. Bethgel
2015. A Neural Algorithm of Artistic Style. CoRR
2015, http://arxiv.org/pdf/1508.06576v2.pdf

[Kingma & Ba 2015] D. Kingma, J. Lei Ba 2015.
Adam: A Method for Stochastic Optimization. ICLR
2015, http://arxiv.org/pdf/1412.6980v8.pdf

[Pasca & Dienes 2005] M. Pasca, P. Dienes 2005.
Aligning Needles in a Haystack: Paraphrase Acqui-
sition Across the Web. Natural Language Processing
IJCNLP 2005, 119-130. aclweb.org/anthology/105-
1011

[PPDB 2013] J. Ganitkevitch, B. Van Durme, C.
Callison-Burch ~ 2013. PPDB: The Paraphrase
Database. Proceedings of NAACL-HLT, 758-764.
http://www.cis.upenn.edu/ ccb/ppdb/

[Project Gutenberg 2016] Free eBooks by Project
Gutenberg. 2016 https://www.gutenberg.org/.

[WhatTheFolly.com 2016] . What The Folly?!
Donald Trump speech transcripts. 2016.
http://www.whatthefolly.com/tag/donald-trump/.

[Xu 2012] W. Xu, A. Ritter, B. Dolan, R. Grishman, C.
Cherry 2012. Paraphrasing for Style. COLING,
2899-2914. http://aclweb.org/anthology/C/C12/C12-
1177.pdf,

https://aclweb.org/anthology/N/N03/N03-1003.pdf
http://www.aclweb.org/anthology/P01-1008
http://www.ccel.org/ccel/bible
http://arxiv.org/abs/1508.06576
http://arxiv.org/pdf/1412.6980v8.pdf
http://www.aclweb.org/anthology/I05-1011
http://www.aclweb.org/anthology/I05-1011
http://www.cis.upenn.edu/~ccb/ppdb/
https://www.gutenberg.org/
http://www.whatthefolly.com/tag/donald-trump/
http://aclweb.org/anthology/C/C12/C12-1177.pdf
http://aclweb.org/anthology/C/C12/C12-1177.pdf

	Introduction & Problem Statement
	Literature Review
	Data Collection
	Methods
	Anchoring algorithm for paraphrase extraction
	Optimizations on Paraphrase extraction

	Language Models
	Style transfer

	Results
	Paraphrase extraction
	Single Corpus Paraphrase Extraction
	Parallel & Pseudo-Parallel Corpus Paraphrase Extraction
	Unrelated Non-Parallel Corpus Paraphrase Extraction

	Language models
	Style transfer

	Conclusion and Future Work

