
Virtual Reality Window

Pol Rosello, Cheng-Han Wu, and Jiayu Wu
Stanford University

{prosello, chw0208, jiayuwu}@stanford.edu

Abstract

We describe a virtual reality system which achieves the
illusion of depth on an ordinary display, requiring no spe-
cial equipment other than a webcam and a computer. The
display simulates motion parallax and a changing field of
view for an individual user, and in this way functions as a
“window” into a virtual, three-dimensional scene. We use
Haar cascade classifiers, camera models, and Kalman fil-
tering to track the user’s head position in 3D in real time
and update the display according to an off-axis projection
model. We extend our system with a gesture recognition
pipeline that allows for object or scene orbiting using hand
gestures. We compare various approaches to head and hand
tracking both qualitatively and quantitatively. Our model
processes frames faster than the camera’s native frame rate
and provides a convincing illusion of depth, as exemplified
in our demonstration video. We implemented our project in
C++ using OpenCV for computer vision tasks and OpenGL
for rendering tasks.

1. Introduction
Virtual reality (VR) and augmented reality (AR) tech-

nology has recently become more accessible to the general
public. Despite this, consumer models of VR/AR headsets
almost exclusively target the gaming market, and other ap-
plications where VR/AR might be useful have been mostly
ignored. A major roadblock to a more widespread adoption
of VR/AR technology is that it requires very expensive and
uncomfortable equipment which must be worn at all times.
This is discouraging to potential users who may not be con-
vinced that VR/AR could be useful for them or who cannot
afford a headset.

One application of VR/AR technology is to be able to
view three-dimensional models from multiple angles sim-
ply by shifting one’s head. Being able to quickly and easily
understand a 3D model is especially important in fields such
as architecture, industrial design, mechanical engineering,
and 3D art. We propose a method for viewing 3D models
that only requires a single webcam, a computer, and a mon-

Figure 1: Our virtual reality window display.

itor (most modern laptops bundle all three) and allows the
user to view the model from multiple perspectives by shift-
ing his or her viewing angle without the use of any special
headsets. We use the webcam to track the position of the
user’s head in 3D space, updating the monitor in real time
to reflect what the user would see from that viewing angle.
In this way, the monitor functions as an augmented reality
“window” into a 3D scene, simulating motion parallax and a
changing field of view as the user moves, thus providing the
illusion of depth. This is similar to Johnny Chung Lee’s Wii
Remote Desktop VR display [1], but we remove the need
for any type of headwear. While the illusion only works for
one user at a time, this is also the case with current aug-
mented reality headsets. We propose to further extend this
interface with gesture recognition to interact with the scene
by waving one’s hand in front of the camera.

2. Previous Work

The type of virtual reality display we describe was pop-
ularized by Lee’s Human-Computer Interaction work at
Carnegie Mellon. Lee’s approach makes use of a Nintendo
Wii Remote, which contains an infrared camera, to perform
head tracking. In Lee’s setup, the remote is placed near a
display (such as a television) facing the user, and the user is
made to wear clear eyeglasses fitted with one infrared LED

1

https://youtu.be/jgI0-zbCuo0


on each side. Because the Wii Remote’s hardware is espe-
cially designed for tracking two IR points, the remote can be
leveraged to achieve fast and accurate head tracking which
can then be used to update a 3D scene on the display for a
successful virtual reality effect. However, Lee’s use of the
Wii Remote limits its availability to a wider audience due
to reliance on specialized hardware. Our proposed solution
does not require any hardware other than a computer and an
attached camera such as a webcam.

A second approach to virtual reality with no head gear
was pioneered by Sandin et al. in [9]. In their work, the
authors use a large-scale tiled array of 35 displays to pro-
vide a wide field-of-view for the user. Real-time head track-
ing is performed using artificial neural networks, requiring
sixteen Linux PCs, each with two NVIDIA GeForce 7900
GTXs. The displays are fitted with a parallax barrier pro-
viding autostereoscopic viewing for the user. Although this
system does away with the need for a headset and provides
a better sense of depth than our approach, it again neces-
sitates expensive special equipment. Furthermore, current
advances in virtual reality technology mean that a high-end
headset with better fidelity can be purchased at a fraction of
the cost of their setup, so its intended target is unclear.

Other approaches to this kind of virtual reality display
have avoided the use of special equipment, but rely on color-
based algorithms to perform head tracking. One such ap-
proach is from Goorts et al. in [10], who use the camshift
algorithm to detect a head within the webcam frame and es-
timate its size. The downside to using color-based tracking
is that it relies on fairly consistent illumination, and most
importantly, it is susceptible to high rates of false positives
with skin-colored objects in the scene.

3. Methods
3.1. Technical Summary

At a high level, the project has three main components:
head tracking, gesture recognition, and scene rendering.
Once the user’s eye position in 3D space is obtained, along
with any gestures he or she may be performing, the scene
is updated to reflect what the user should see from their
current position. Due to the possibility of the user not di-
rectly facing the screen, an off-axis skewed frustum projec-
tion must be used. We implemented our system in C++ and
used OpenCV for computer vision tasks and OpenGL for
scene rendering tasks.

3.2. Head Tracking

3.2.1 Camera Calibration

The first step in our pipeline is to calibrate the webcam
to obtain an accurate focal length and camera center for
head tracking. We capture 15 images of a checkerboard
pattern with a known geometry from multiple viewpoints,

extract the corners of the checkerboard, and run the global
Levenberg-Marquardt optimization algorithm to obtain the
values of the intrinsic camera parameters which minimize
the total sum of squared distances between the observed
feature points and the projected object points (i.e. the repro-
jection error). We then obtain the camera matrix K, which
contains the focal lengths fx and fy and the camera center
cx and cy as:

K =

fx 0 cx
0 fy cy
0 0 1


In practice, we set f equal to the mean of fx and fy for sim-
plicity. For performance reasons, we reduce the resolution
of the camera frames (see Section 4.3). We note that when-
ever the resolution of the camera frame is changed, these
values should be scaled appropriately.

3.2.2 Haar Cascade Classifier

The first step of our head tracking pipeline is face detection
using a pre-trained Haar feature-based cascaded classifier
as in [2]. The basic working principle of this classifier is to
learn a collection of Haar-like features which yield a high
detection rate on faces. Each Haar-like feature considers
adjacent rectangular regions in a window, sums up the pixel
intensities in each region, and calculates the difference be-
tween these sums. A weak classifier is trained for each such
feature by determining a threshold value for the difference
which best separates faces from non-faces on the training
set. By cascading several hundred weak classifiers in se-
ries, the accuracy of the system increases. We choose Haar
cascade classifiers for this task because they are simple, and
most importantly, fast enough to achieve real-time classifi-
cation on a modern laptop. They are also more robust to
illumination changes or cluttered backgrounds than color-
based methods such as camshift. We convert each frame to
gray scale before using the Haar cascade to detect the loca-
tion and size of the user’s head.

3.2.3 Obtaining 3D Coordinates

After the face is detected, we estimate the three-dimensional
coordinates of the head (X,Y, Z) to determine how to up-
date the scene. First, the point (x, y) between the user’s
two eyes is obtained based on the size and position of the
detected face in the current frame. This is done simply
through estimation based on a fixed ratio for the position
of the user’s eyes relative to the size of their head. We then
estimate the distance Z of the head away from the camera
based on the detected width of the user’s head, using the
pinhole camera model and the triangle inequality

Z =
Wknownf

wmeas
(1)

2



where Wknown is the known width of the user’s head,
wmeas is the measured width of the head on the screen, and
f is the focal length found in the camera calibration step.
Then we compute the X and Y coordinates of the head in
3D as

X =
(x− cx)Z

f
Y =

(y − cy)Z

f
(2)

where (cx, cy) is the center of the camera.

3.2.4 Kalman Filtering

A major challenge we had to overcome is to provide
temporally-smooth head tracking. Alone, the Haar clas-
sifier operates on frames independently, with no notion of
continuity between frames. Small discontinuities in track-
ing the user’s position and size between frames lead to a
persistently jittery virtual scene and greatly detract from the
augmented reality illusion.

A simple approach to reduce noise in the tracking algo-
rithm is to compute a moving average of the head position
across several recent frames. However, a moving average
filter is slow to react to changes in the head position because
it assumes the face is an object with a constant position. Ig-
noring noise, if we are averaging the head position across
k frames and the head moves, it will take k frames for the
filtered head position to converge to the correct location. In
our experiments, this delay was perceptible by the user and
detracted from the illusion of depth. A moving average filter
also does not deal well with occlusions or false negatives in
the head detection step: if the face is not found across sev-
eral frames, the prediction of the current head position will
converge to a static point even if the head was previously
moving.

To address these issues, we use a Kalman filter based on
a physical model of the head’s movements to smooth out
jittery tracking behavior. The Kalman filter is also able to
predict the head’s position even if the face was not found
across several frames by relying on the model of its move-
ment. We consider different physical models for the user’s
head and compare these in Section 4. The four models for
the face we considered were:

1. An object in two dimensions with constant velocity
and a constant width and height

2. An object in three dimensions with a constant velocity

3. An object in three dimensions with a constant acceler-
ation

4. An object in three dimensions with a constant acceler-
ation in the x and y dimensions with constant velocity
in the z dimension

Note that the first model filters the detected head position
before mapping it to 3D coordinates, while the remaining
models filter the head position after this step. The inclusion
of the last model is due to our observation that the great-
est source of inconsistency in our Haar cascade classifier is
the detected size of the head (affecting the z position of the
face). Modeling the head as having a constant velocity in a
particular dimension leads to smoother tracking in that di-
mension, although it reduces its ability to respond quickly
to changes in the head’s velocity (i.e. acceleration) along
that axis.

3.3. Gesture Recognition

The gesture recognition system is composed of two lay-
ers: tracking and recognition.

3.3.1 Detection

Our virtual reality window incorporates a function for users
to rotate the scene object using gesture recognition. In order
to create an intuitive user experience, we use hand move-
ment parallel to the screen plane for rotation. Hand move-
ment is tracked using a fist detector. Similar to head track-
ing, we implement a Haar feature-based cascade classifier
via OpenCV. We focus specifically on fist detection since
we want the users to imagine grabbing the virtual object and
perform manipulation. A pre-trained Haar cascade model
of fists is introduced as training data for the OpenCV multi-
scale detection function.

3.3.2 Recognition

The recognition layer handles data extracted in the previous
layers and assigns the resulting groups its gesture classi-
fication, producing a command for scene rendering. Our
method focuses on hand-driven control with information
extracted through the tracking of fingertips or the centroid
of the hand. Methods such as Principal Component Analy-
sis (PCA) with priors of several gestures placed as training
data have been used for recognition. Hidden Markov Mod-
els (HMM) have also been used as a way of categorizing
different hand trajectories in order to prevent unintentional
gesture movements [6].

For our experimental setting, we want to create an im-
mersive user experience where a fist gesture is similar to a
real-world grabbing motion. The system is designed such
that only the grabbing motion will allow users to control
specific objects in the scene. After several experiments with
different fist-detection methods, we decided to use clus-
ter smoothing with non-maximal suppression for smoothing
the gesture locus. A set of five raw 2D coordinates is passed
into a queue, used to calculate a new centroid and update
the scene (see Figure 2). Due to the nature of the shape and
contrast of fist compared to that of a face, our training data

3



Figure 2: Gesture detection smoothing procedure.

is prone to rectangular objects with either vertical or hori-
zontal contrasts. However, false positives are relatively easy
to eliminate using non-maximal suppression since the user
is normally the closet object to the camera. By choosing
the largest detected element, we were able to successfully
select fists. From our experiments when incorporating only
half the full resolution (1280 x 1024) of a MacBook Air
camera, system performance reaches 80 frames per second.

3.4. Scene Rendering

The major task of scene rendering in our project is to
create a 3D see-through experience. In order to do that, we
render 3D images in real-time based on the user’s head po-
sition. We model the user’s eyes as a virtual camera and
treat their coordinates in 3D as the camera’s extrinsic pa-
rameters. Once our head tracking pipeline provides us with
an estimate for these parameters, we then update the image
on the display screen, as seen in Figure 4.

3.4.1 Skewed Frustum Projection

We can use the OpenGL glLookAt function to perform a
traditional projective transformation and modify what part
of the virtual world is displayed according to the user’s head
position. However, if the user is not directly in front of the
screen, this creates a tilt to the projection plane, leading to
Keystoning effect where the user’s perception of the scene
is distorted (Figure 3a). Because the physical screen can-
not move along with this changing view, a modification is
needed by using glFrustum. glFrustum generalizes
glLookAt by allowing the scene boundaries to be asym-
metric about the z-axis of the screen. In other words, the
view frustum from the eye to the screen may be unaligned
with the viewing plane normal. Each time the head tracker
updates the head position, the view frustum will be adjusted
(Figure 3b). The goal of calling glFrustum is to posi-
tion the viewing plane relative to the OpenGL camera in the
same way that the physical window is positioned relative to
our tracked head position.

The two main issues we need to solve for rendering is
off-axis projection and XY-plane rotation. Because the user
can move around, the vector from eye position to screen

(a) (b)

Figure 3: Skewed frustum projection. (a) Left: Keyston-
ing effect of incorrect projection method. Right: Skewed
frustum projection. (b) Skewed frustum in different eye po-
sitions with the virtual camera located at the user’s location.

Figure 4: Scene rendering from different viewpoints.

origin is not necessarily perpendicular to the screen. Fur-
thermore, the user’s eye position may not be parallel to XY-
plane, which means we need to rotate the XY-plane to make
it parallel to the user’s eye position. Therefore, we need to
find three transformation matrices: M , an off-axis projec-
tive transformation; R, a rotation transformation to adjust
the XY-plane; and finally T , a translation transformation to
align the frustum’s apex with the user’s eye position. We
base this approach on [8] and describe it below.

Let pa, pb, pc be the lower left, lower right and upper left
corner of the screen, pe be the center of eye position. Let
vr be the unit vector of pb − pa, vu be the unit vector of
pc − pa, vn be the unit vector of vr × vu.

p′e

l r

b

t

We also have the parameters defined in the above figure.
p′e is the intersection of the line that follows vn and passes
through pe and the screen plane.

We define the off-axis perspective projection M , the XY-
plane rotation R, and the translation T as:

4



(a) (b)

Figure 5: Panoramic rendering. (a) Interpolating 360-
degree panorama into spherical texture (seen from the out-
side). (b) Effect of the window. We perform scene rota-
tion using the fist while rendering the perspective projection
with respect to the user.

M =


2n
r−l 0 r+l

r−l 0

0 2n
t−b

t+b
t−b 0

0 0 − f+n
f−n − 2fn

f−n
0 0 −1 0

 (3)

R =


vrx vry vrz 0
vux vuy vuz 0
vnx vny vnz 0
0 0 0 1

 (4)

T =


1 0 0 −pex
0 1 0 −pey
0 0 1 −pez
0 0 0 1

 (5)

The final perspective projection transformation we use is
MRT .

3.4.2 Panoramic Scene

We also added a second scene of a panoramic picture, remi-
niscent of looking out of an actual window (see Figure 5). In
this case, users can use their fist to rotate the full scene while
maintaining the functionality of the head-tracking perspec-
tive projection. Unlike the previous rendering environment,
gesture rotation in this case will affect the whole scene in-
stead of a specific object. If we follow the previous proce-
dure and use a panoramic picture as an flat “wallpaper” at
the far end of the scene, rotation may throw the picture out
of bounds. On the other hand, if we reduce the range of rota-
tion, part of the picture will remain unseen. Due to the issue
presented above, we use a sphere as the scene, textured on
the inside with a panoramic picture, and place the virtual
camera inside the sphere. Under the assumption that the
sphere radius is large enough that the scene can be seen as
a flat picture, radial distortion does not heavily affect users’
immersive experience.

4. Experiments

4.1. Head Tracking Evaluation

4.1.1 Qualitative Evaluation

We qualitatively evaluate the performance of our head
tracking pipeline by using our system and noting any ef-
fects which detract from the illusion of depth. Figure 6
shows the appearance of the screen from different angles.
As evidenced by our demonstration video, the most helpful
addition to our system in achieving the illusion of depth was
the use of filtering. Without Kalman filtering, scene render-
ing is jittery even when the user is standing still. This is due
to inter-frame variation caused by noise leading the Haar
cascade face detector to return slightly different head sizes
and positions between frames. Without any filtering, the
system is also unable to predict the head location whenever
the Haar cascade misses a face detection, causing the scene
to momentarily freeze until detection is successful again.
Both of these behaviors greatly detract from the illusion of
depth. With the addition of Kalman filtering, the jitter be-
tween frames is greatly reduced and the illusion of depth is
more successful.

We experimented with different physical models of the
face when performing Kalman filtering and found that mod-
eling the head as an object in three dimensions with a con-
stant acceleration was the most convincing approach from
the user’s perspective. Although this was not the model with
the lowest RMSE in our quantitative evaluation (see Sec-
tion 4.1.2), we suspect RMSE may not correlate well with
user experience. The models that treated the face as an ob-
ject with a constant velocity were noticeably slow in updat-
ing the display whenever the user would accelerate by mov-
ing to a different viewpoint. In our evaluation videos, the
face was moving relatively slowly and with a constant ve-
locity, which would explain why Mode 2 fared better quan-
titatively.

Perhaps the most noticeable issue with our system is that
our display is not stereoscopic. Although motion parallax
and a changing field of view are a significant part of hu-
man depth perception, stereo vision plays an important role
as well. When viewed with one eye closed, the scene ap-
pears more realistic than with both eyes open. This is most
apparent when comparing the results in monocular first-
person videos of our system (taken with a single camera)
with our real-world experience with it. While the scene up-
dates rapidly and convincingly, there is a reduction in the
illusion caused by the same image being projected to both
eyes. We contemplated rendering a stereoscopic scene and
requiring the user to wear anaglyph red-cyan 3D glasses.
However, we did not consider this to be a satisfying solu-
tion due to the addition of external hardware, as discussed
in Sections 1 and 2.

5

https://youtu.be/jgI0-zbCuo0


Figure 6: Display appearance from different viewpoints. Reflections diminish the illusion.

Other issues we noticed were caused by a dirty display or
an inappropriate screen brightness. With smudges or reflec-
tions on the screen, it is easier to notice that the objects in
our virtual reality scene are actually lying flat on the plane
of the display. These issues are easily fixed by cleaning the
screen and adjusting its brightness before use. Despite these
problems, the illusion of depth is strong enough for our sys-
tem to be successful.

4.1.2 Quantitative Evaluation

We evaluate our model’s head tracking performance quanti-
tatively by manually annotating the head and eye positions
in sample videos of a user using the virtual window, and cal-
culating the average distance between the model’s detected
head position and the true position across all frames. If our
evaluation videos have N frames, where the position of the
head in frame i is (xi, yi) and our model’s detected posi-
tion is (x′i, y

′
i), our error metric for head tracking will be

the root-mean-square error:

RMSE =
1

N

N∑
i=1

√
(xi − x′i)

2 + (yi − y′i)
2 (6)

In our figures, we normalize RMSE to the width of the
frame in order to compare tracking error using different
frame resolutions.

We evaluate our system by comparing the RMSE of the
detected head location using different smoothing techniques
and lighting conditions. First, we input a full-resolution
pre-annotated video to the system and use RMSE to eval-
uate 5 different tracking modes. Mode 0 is the baseline
Haar cascade tracking. Modes 1-4 correspond to the differ-
ent physical models described in Section 3.2.4. Mode 1 is
the Haar cascade tracking with a two-dimensional Kalman
filter and Modes 2-4 is the Haar cascade tracking with three-
dimensional Kalman filter with different physical models.

The results of this evaluation are shown in Figure 7.
The results show that the best performing mode is Mode

Figure 7: Head tracking RMSE of various tracking modes.
RMSE is normalized to the width of the full 1280 x 1024
resolution. Mode 0 is the baseline Haar cascade tracking
with no filtering. Modes 1-4 perform Kalman filtering after
detection using various physical models of the face. Mode
1 models the face as an object in 2D with constant velocity
and a constant width and height. Modes 2-4 perform filter-
ing after 3D position estimation. Mode 2 models the face as
an object in 3D with constant velocity. Mode 3 models the
face as an object in 3D with constant acceleration. Mode
4 models the face as an object with constant acceleration
in the x and y dimensions and constant velocity in the z
dimension.

2, which is to model face as a 3D object with constant ve-
locity. In our annotated video, the head moves in a constant
velocity most of the time, and it also moves slightly along
the z-axis. Therefore, the modeling method of Mode 2 fits
the features of the video. We notice that Mode 0 (tracking
without smoothing) only has a slightly worse performance
than Mode 2. However, the actual user experience varies a

6



Figure 8: Head tracking RMSE under different lighting con-
ditions at full 1280 x 1024 resolution. RMSE is normalized
to the frame width.

lot for Mode 0 and Mode 2 (see Section 4.1.1). The scene
rendering for our system using Mode 2 is smooth while that
for Mode 0 is shaky.

The results for different tracking modes also show that
choosing the best modeling method depends on the charac-
teristics of the input frames. Specifically, in most use cases
where the user sits in front of the camera and makes head
movements that are not too fast, then the best tracking to use
is to model the face as a 3D object with constant velocity.

We also evaluate the lighting conditions in Figure 8. We
compare three different lighting conditions: dark, dim and
bright. We use the same system with tracking mode 2
and full resolution to test three videos with varying light-
ing conditions. The results show that the error of dark and
dim input videos is significantly higher than the bright one.
Therefore, lighting conditions can impact the performance
of Haar cascade tracking, and the input video should be rea-
sonably bright. Furthermore, we notice that the error of dark
input and that of dim input are almost the same. We believe
there is a lighting threshold below which the performance
of the Haar cascade classifier will be somewhat equivalently
poor.

4.2. Gesture Recognition Evaluation

4.2.1 Qualitative Evaluation

To evaluate our gesture recognition system, we observed
the effect of the user’s environment on its performance. Al-
though there is less inter-class variation with fists than with
faces, a fist shape has significantly greater similarity to daily
objects with the same contour and contrasts, so detection

may not be as accurate. Features of a fist rely on contrast
between folded fingers and the palm, which will be less
significant under background lighting or saturated illumi-
nation. From our experiments we found that the best fist
tracking was achieved with side illumination, which gives
good contrast; and a plain background, which gives a clear
contour. However, detection errors are frequent when the
user puts the fist in front of the body, especially the facial
area. This is due to the similarity in the value of the skin
tone when transformed to grayscale. The system will not
have a clear contrast over the contour of the fist from its
background; thus, a Haar cascade classification system will
not be able to match certain features in the early stages of
classification and will fail to identify the fist.

4.2.2 Quantitative Evaluation

Similar to our head tracking evaluation, we evaluate our
gesture recognition pipeline by manually annotating videos
and computing the RMSE of our detected hand position.
We consider two independent parameters which affect the
detection accuracy, both related to the webcam detection en-
vironment: background complexity and illumination. Com-
puter webcams tend to adjust exposure according to average
frame brightness, which causes faces and fists to be plain
black, so backward lighting will not be taken into consid-
eration in our evaluation for its near zero accuracy. Note
that although exact numbers are provided for comparison,
the testing setup still has variation that is not explicitly ac-
counted for, including fist rotation and shadows. These mi-
nor variations do not have a great impact in our comparison
but will affect our confidence interval.

We first evaluate the RMSE of our fist detection pipeline
as the fist is moved in the frame. We consider four cam-
era frame conditions: a plain background color with suffi-
cient illumination, a plain background color with a complex
background pattern, a plain background with insufficient il-
lumination, and a complex background with insufficient il-
lumination. Figure 10 shows the RMSE of fist position mea-
sured between the detected fist positions and the manually-
annotated positions in four evaluation videos, one for each
condition. In each video, the fist was moved around the
user’s face according to the pattern in Figure 9a. It can be
seen from the comparison that a plain background provides
good contrast for Haar cascade detection. The importance
of background clarity is shown when comparing a complex
background with sufficient lighting and a plain background
with insufficient lighting. The plain background case has a
relatively lower RMSE under the same movement.

We also evaluate the error of our fist detector depending
on the position of the fist in the frame. We take the average
occurrence within 100 frames of detection failure and sud-
den out-of-locus jump of over 30 pixels into account. The

7



(a) (b)

Figure 9: Movement patterns in manually-annotated fist de-
tection evaluation videos. (a) Fist locus for RMSE evalu-
ation under different conditions. (b) Fist locus for spatial
error evaluation.

Figure 10: Root mean square error of fist detection in dif-
ferent background conditions according to the movement in
Figure 9a, normalized by the frame width. Mode 0: Plain
background and sufficient illumination. Mode 1: Complex
background with sufficient illumination. Mode 3: Plain
background with insufficient illumination. Mode 4: Com-
plex background with insufficient illumination.

frame is divided into nine regions as shown in Figure 9b.
For each condition, we computed the failure rate of the sys-
tem in each of the nine regions. A failure is defined as either
the fist being detected in the incorrect region of the frame,
the fist experiencing a sudden jump of over 30 pixels with
respect to the previous frame, or no fist being detected at all.
We computed the failure rate over the course of 100 frames
per region. The results of this analysis are shown in Fig-
ure 11. The user’s body, especially the facial area, is prone
to a high failure rate in all four cases. Due to the color sim-
ilarity of the user’s skin tone, the grayscale values fed into
the Haar-cascade system will not be as distinguishable as a
plain background. The importance of clear contour and high
contrast is shown to be critical from the above experiments.

(a) (b)

(c) (d)

Figure 11: Heat map of failure rate with respect to local
fist movement (Figure 9b) within 100 frames. (a) Plain
background with sufficient illumination. (b) Complex back-
ground with sufficient illumination. (c) Plain background
with insufficient illumination. (d) Complex background
with insufficient illumination.

Figure 12: Latency of system on different frame sizes, eval-
uated on a 2015 MacBook Air with a camera resolution of
1280 x 1024 and a screen resolution of 1440 x 900. The
x-axis refers to the resolution of the processed frames. A
resolution factor of 0.5 reduces the number of pixels on the
screen by a factor of 4.

4.3. Latency Evaluation

We also evaluate the latency of our system. At the full
1280 x 1024 resolution of our webcam, the processing time
per frame of our pipeline is longer than the camera’s native
frame rate, leading to dropped frames and a noticeably slow
response time between the user’s head movements and the
updated scene on the display. Because our system is scale
invariant, we can address this issue by reducing the resolu-
tion of each frame before processing. The effects on latency

8



Figure 13: RMSE of head tracking on different frame sizes,
normalized by the frame width. The resolution ratio is
defined in terms of the fraction of the width of the full-
resolution frame (1280 x 1024). A resolution ratio of 0.5
reduces the number of pixels on the screen by a factor of 4.

of downscaling frames are shown in Figure 12. We are able
to process frames above the camera’s frame rate of 30 fps
by reducing the width of the webcam frame by a factor of
0.7, leading to a resolution of 896 x 717. At this frame rate,
the latency of the system is fast enough for the user to not
notice any delay between sequential updates of the display.
The RMSE of the system is also not significantly affected,
as seen in Figure 13.

5. Conclusion and future work
We designed and implemented a virtual window display

that simulates the illusion of depth by tracking the user’s
head using a webcam and updating the rendering of a vir-
tual scene accordingly. We quantitatively evaluate our head
and fist tracking pipeline by manually annotating videos and
computing the RMSE of the system under different scene
conditions, confirming that tracking works best when the
user’s surroundings are well-lit and uncluttered. We com-
pare different physical models for our head tracking Kalman
filter and conclude that modeling the head as an object in
3D with a constant velocity provides a lower RMSE, while
modeling it as an object in 3D with a constant acceleration
provides higher responsiveness to sudden changes in veloc-
ity. The latency of our system can be adjusted by down-
scaling the resolution of the camera frames, enabling it to
process frames at the camera’s native frame rate without a
noticeable drop in accuracy. The illusion of depth is con-
vincing, especially when using a clean, non-reflective dis-
play and viewing it with one eye shut. Overall, our virtual
reality window meets our initial objective of being useful

for viewing 3D models.
Our work can be extended in several ways. One of these

is to render the scene as a stereoscopic display, using red-
cyan anaglyph glasses to provide a separate signal to each
eye, as alluded to in Section 4.1.1. An autostereographic
display could also be used instead. Another avenue of re-
search would be to incorporate an explicit depth signal for
improved 3D tracking accuracy, such as that provided by a
Microsoft Kinect. However, all of these extensions require
additional hardware: we feel that our system is close to the
limits of what can be achieved with a single display and a
camera. Integrating our approach with a modern game en-
gine or a 3D CAD program would be helpful in evaluating
its usefulness in real-world applications.

References
[1] Lee, Johnny Chung. Hacking the Nintendo Wii Re-

mote. IEEE Pervasive Computing, 2008.

[2] Viola, Paul and Jones, Michael. Rapid Object De-
tection using a Boosted Cascade of Simple Features.
CVPR 2001.

[3] M. Cote, P. Payeur, and G. Comeau. Comparative
study of adaptive segmentation techniques for ges-
ture analysis in unconstrained environments. IEEE
Int. Workshop on Imagining Systems and Techniques,
pages 2833, 2006.

[4] X. Zabulis, H. Baltzakis, and A. Argyros. Vision-
based hand gesture recognition for human-computer
interaction. The Universal Access Handbook, Human
Factors and Ergonomics. Lawrence Erlbaum Asso-
ciates, Inc. (LEA).

[5] M. Asaari and S. Suandi. Hand gesture tracking sys-
tem using adaptive kalman filter. Intelligent Systems
Design and Applications (ISDA), 2010 10th Interna-
tional Conference on, 29 2010-dec. 1 2010, pp. 166
171.

[6] H.K. Lee and J.H. Kim. An HMM-Based Thresh-
old Model Approach for Gesture Recognition. IEEE
Trans. Pattern Analysis and Machine Intelligence, vol.
21, no. 10, pp. 961-973, Oct. 1999.

[7] Chang Yuan. Using Large-size 2D Displays to Cre-
ate 3D Hyper-Realistic See-Through Experiences.
iris.usc.edu.

[8] R. Kooima. Generalized Perspective Projection. LSU
Computer Science and Engineering Division. June
2009.

[9] Sandin, D., Margolis, T., Ge, J., Girado, J., Peterka,
T., DeFanti, T. The Varrier Autostereoscopic Virtual

9



Reality Display. ACM Transactions on Graphics, Pro-
ceedings of ACM SIGGRAPH 2005, vol 24, no 3, pp.
894-903.

[10] P. Goorts, S. Maesen, D. Scarlino and P. Bekaert.
Bringing 3D vision to the web: Acquiring motion par-
allax using commodity cameras and WebGL. 2013 In-
ternational Conference on 3D Imaging, pp. 1-6, Dec.
2013.

10


